Zigzag Persistent Homology and Real-valued Functions

被引:95
作者
Carlsson, Gunnar [1 ]
de Silva, Vin [1 ]
Morozov, Dmitriy [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09) | 2009年
关键词
Zigzag persistent homology; Mayer-Vietoris pyramid; levelset zigzag; extended persistence; algorithms; STABILITY;
D O I
10.1145/1542362.1542408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of computing zigzag persistence of a sequence of homology groups and study a particular sequence derived from the levelsets of a real-valued function on a topological space. The result is a local, symmetric interval descriptor of the function. Our structural results establish a connection between the zigzag pairs in this sequence and extended persistence, and in the process resolve an open question associated with the latter. Our algorithmic results not only provide a way to compute zigzag persistence for any sequence of homology groups, but combined with our structural results give a novel algorithm for computing extended persistence. This algorithm is easily parallelizable and uses (asymptotically) less memory.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 16 条
[1]  
Abdi H., 2007, ENCY RES METHODS SOC, P598, DOI DOI 10.4135/9781412952644
[2]  
CARLSSON G, 2008, TOPOLOGY DATA
[3]  
CARLSSON G, 2008, ARXIV08120197V1
[4]  
CHAZAL F, 2009, P ANN S COM IN PRESS
[5]  
Chazal F, 2009, PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1021
[6]  
Cohen-Steiner D., 2006, Proceedings of the Twenty-Second Annual Symposium on Computational Geometry (SCG'06), P119, DOI 10.1145/1137856.1137877
[7]   Stability of persistence diagrams [J].
Cohen-Steiner, David ;
Edelsbrunner, Herbert ;
Harer, John .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) :103-120
[8]  
Cohen-Steiner D, 2009, PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1011
[9]  
COHENSTEINER D, 2009, FDN COMPUTATIONAL MA, V8, P79
[10]   Stability of critical points with interval persistence [J].
Dey, Tamal K. ;
Wenger, Rephael .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (03) :479-512