A generalisation of the Burkholder-Davis-Gundy inequalities

被引:2
作者
Hernandez-Hernandez, Ma Elena [1 ]
Jacka, Saul D. [2 ,3 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Univ Warwick, Alan Turing Inst, Coventry, W Midlands, England
[3] Univ Warwick, Dept Stat, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Burkholder-Davis-Gundy inequalities; quadratic variation; dual previsible projection;
D O I
10.1214/22-ECP493
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a cadlag local martingale M with square brackets [M]. In this paper, we provide upper and lower bounds for expectations of the type E [M](q/2)(tau), for any stopping time tau and q >= 2, in terms of predictable processes. This result can be thought of as a Burkholder-Davis-Gundy type inequality in the sense that it can be used to relate the expectation of the running maximum vertical bar M*vertical bar(q) to the expectation of the dual previsible projections of the relevant powers of the associated jumps of M. The case for a class of moderate functions is also discussed.
引用
收藏
页数:8
相关论文
共 9 条
[1]  
[Anonymous], 2013, Limit Theorems for Stochastic Processes. Grundlehren der mathematischen Wissenschaften
[2]  
Applebaum D, 2009, CAM ST AD M, V93, P1
[3]  
BARLOW MT, 1986, P LOND MATH SOC, V52, P142
[4]  
Kunita H, 2004, TRENDS MATH, P305
[5]  
Lenglart E., 1980, SEMINAIRE PROBABILIT, V14, P26
[6]  
Liptser R. Sh., 1989, MATH APPL
[7]   On Maximal Inequalities for Purely Discontinuous Martingales in Infinite Dimensions [J].
Marinelli, Carlo ;
Roeckner, Michael .
SEMINAIRE DE PROBABILITES XLVI, 2014, 2123 :293-315
[8]  
Protter P. E., 2005, Stochastic Integration and Differential Equations
[9]  
Williams David, 2000, Ito Calculus, V2