Detecting harmful algal blooms using Geostationary Ocean Color Imager (GOCI) data in Bohai Sea, China

被引:2
作者
Xu, Mingzhu [1 ]
Gao, Zhiqiang [2 ,3 ]
Liu, Chaoshun [3 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
[3] E China Normal Univ, Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R China
来源
REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY XII | 2015年 / 9610卷
关键词
Harmful algal blooms; GOCI; remote sensing; Bohai Sea; Aureococcus anophagefferens;
D O I
10.1117/12.2184249
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Bohai Sea is a semi-enclosed inland sea with serious environmental problems. Harmful algal blooms (HABs) in Bohai Sea happen almost every year covering a large area for a long duration. Real time detection of the HABs can significantly reduce economic loss and assure human safety. Remote sensing technology can monitor the sea surface over a large area and detect HABs. Geo-stationary Ocean Color Imager (GOCI) is the world's first geostationary ocean color imager with high spatial and temporal resolution for monitoring the Bohai Sea. Rapid scanning of the GOCI allows enough cloud-free observations to accumulate for detection of HABs. Many approaches exist for detecting the HABs with GOCI data, but the approaches are rarely validated.. In this paper, an Aureococcus anophagefferens bloom that happened in Qinhuangdao is used to evaluate several HAB detecting approaches: abnormal chlorophyll concentration, red tide index (RI) and MODIS red tide index (MRI). Validations with field observations showed that the HAB was best detected with MRI, second with chlorophyll concentration abnormity and worst with RI. These results show that the MRI best detects the Aureococcus anophagefferens algae.
引用
收藏
页数:6
相关论文
共 9 条
[1]   Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters [J].
Ahn, Yu-Hwan ;
Shanmugam, Palanisamy .
REMOTE SENSING OF ENVIRONMENT, 2006, 103 (04) :419-437
[2]  
Chu P.C., 2010, OCEANS 2010 MTS IEEE, P1001
[3]   Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data [J].
Hu, Chuanmin ;
Cannizzaro, Jennifer ;
Carder, Kendall L. ;
Muller-Karger, Frank E. ;
Hardy, Robert .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (09) :2048-2058
[4]   Detection of Cochlodinium polykrikoides red tide based on two-stage filtering using MODIS data [J].
Kim, Yongmin ;
Byun, Younggi ;
Kim, Yongil ;
Eo, Yangdam .
DESALINATION, 2009, 249 (03) :1171-1179
[5]   Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI [J].
Lou, Xiulin ;
Hu, Chuanmin .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :562-572
[6]   Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS) [J].
Joo-Hyung Ryu ;
Hee-Jeong Han ;
Seongick Cho ;
Young-Je Park ;
Yu-Hwan Ahn .
Ocean Science Journal, 2012, 47 (3) :223-233
[7]   Detection of harmful algal blooms of Karenia mikimotoi using MODIS measurements: A case study of Seto-Inland Sea, Japan [J].
Siswanto, Eko ;
Ishizaka, Joji ;
Tripathy, Sarat Chandra ;
Miyamura, Kazuyoshi .
REMOTE SENSING OF ENVIRONMENT, 2013, 129 :185-196
[8]   Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas [J].
Siswanto, Eko ;
Tang, Junwu ;
Yamaguchi, Hisashi ;
Ahn, Yu-Hwan ;
Ishizaka, Joji ;
Yoo, Sinjae ;
Kim, Sang-Woo ;
Kiyomoto, Yoko ;
Yamada, Keiko ;
Chiang, Connie ;
Kawamura, Hiroshi .
JOURNAL OF OCEANOGRAPHY, 2011, 67 (05) :627-650
[9]   Evaluation of the use of SeaWiFS imagery for detecting Karenia brevis harmful algal blooms in the eastern Gulf of Mexico [J].
Tomlinson, MC ;
Stumpf, RP ;
Ransibrahmanakul, V ;
Truby, EW ;
Kirkpatrick, GJ ;
Pederson, BA ;
Vargo, GA ;
Heil, CA .
REMOTE SENSING OF ENVIRONMENT, 2004, 91 (3-4) :293-303