On Parallel Thinning Algorithms: Minimal Non-simple Sets, P-simple Points and Critical Kernels

被引:19
作者
Bertrand, Gilles [1 ]
Couprie, Michel [1 ]
机构
[1] Univ Paris Est, Lab Informat Gaspard Monge, Equipe A3SI, ESIEE Paris, Marne La Vallee, France
关键词
Parallel thinning; Topology preservation; Critical kernel; P-simple point; Minimal non-simple set; Cubical complex; Collapse; Simple point; 4D space; BINARY IMAGES; CONNECTIVITY PRESERVATION; TOPOLOGY PRESERVATION; 3D; SPACES;
D O I
10.1007/s10851-009-0152-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Critical kernels constitute a general framework in the category of abstract complexes for the study of parallel homotopic thinning in any dimension. In this article, we present new results linking critical kernels to minimal non-simple sets (MNS) and P-simple points, which are notions conceived to study parallel thinning in discrete grids. We show that these two previously introduced notions can be retrieved, better understood and enriched in the framework of critical kernels. In particular, we propose new characterizations which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting P-simple points and minimal non-simple sets.
引用
收藏
页码:23 / 35
页数:13
相关论文
共 34 条
[1]  
Alexandroff P.S., 1937, DISKRETE RAUME MAT S, V2, P501
[2]  
[Anonymous], 1964, Lectures on Modern Mathematics
[3]   Two-dimensional parallel thinning algorithms based on critical kernels [J].
Bertrand, G. ;
Couprie, M. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 31 (01) :35-56
[4]  
BERTRAND G, 1995, P SOC PHOTO-OPT INS, V2573, P52, DOI 10.1117/12.216440
[5]  
BERTRAND G, 1995, CR ACAD SCI I-MATH, V321, P1077
[6]   On critical kernels [J].
Bertrand, Gilles .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (07) :363-367
[7]  
Bertrand G, 2006, LECT NOTES COMPUT SC, V4245, P580
[8]   Strong thinning and polyhedric approximation of the surface of a voxel object [J].
Burguet, J ;
Malgouyres, R .
DISCRETE APPLIED MATHEMATICS, 2003, 125 (01) :93-114
[9]  
Cohen M. M., 1973, GRAD TEXTS MATH, V10
[10]  
COUPRIE M, 2006, IGM200601 U MARN LA