Strong measure zero in separable metric spaces and Polish groups

被引:2
作者
Hrusak, Michael [1 ]
Wohofsky, Wolfgang [2 ]
Zindulka, Ondrej [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient, Ciudad Univ, Mexico City 04510, DF, Mexico
[2] Tech Univ Wien, Inst Diskrete Mathemat & Geometrie, Wiedner Hauptstr 8-10-104, A-1040 Vienna, Austria
[3] Czech Tech Univ, Fac Civil Engn, Dept Math, Thakurova 7, Prague 16000 6, Czech Republic
关键词
Strong measure zero; Separable metric space; Small ball property; Polish group; Elastic group; Baer-Specker group Z(omega); Galvin-Mycielski-Solovay theorem; Meager; Uniformly meager; Translation; omega-Translatable; Uniformity number; Rothberger; SATURATED IDEALS; SETS; MAXIMUM;
D O I
10.1007/s00153-015-0459-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of strong measure zero is studied in the context of Polish groups and general separable metric spaces. An extension of a theorem of Galvin, Mycielski and Solovay is given, whereas the theorem is shown to fail for the Baer-Specker group . The uniformity number of the ideal of strong measure zero subsets of a separable metric space is examined, providing solutions to several problems of Miller and SteprAns (Ann Pure Appl Logic 140(1-3):52-59, 2006).
引用
收藏
页码:105 / 131
页数:27
相关论文
共 38 条
[1]  
[Anonymous], ACTA MATH
[2]  
[Anonymous], UNPUB
[3]  
[Anonymous], GENERATING INFINITE
[4]  
[Anonymous], 2012, CONFLUENTES MATH
[5]  
[Anonymous], 1933, ACTA MATH-DJURSHOLM
[6]  
[Anonymous], NOT AM MATH SOC
[7]  
[Anonymous], 2000, THESIS
[8]  
[Anonymous], 2013, THESIS TU WIEN
[9]  
[Anonymous], 1934, FUND MATH
[10]  
Balka R, 2010, REAL ANAL EXCH, V36, P245