Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic liquids

被引:86
作者
Cao, Lingdi [1 ]
Zhu, Peng [2 ,3 ]
Zhao, Yongsheng [2 ,3 ]
Zhao, Jihong [4 ,5 ]
机构
[1] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energy, Egerlandstr 3, D-91058 Erlangen, Germany
[2] Shanghai Jiao Tong Univ, Dept Micro Nanoelect, Key Lab Thin Film & Microfabricat, Minist Educ, Shanghai 200240, Peoples R China
[3] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[4] Collaborat Innovat Ctr Environm Pollut Control &, Zhengzhou 450001, Henan, Peoples R China
[5] Xuchang Univ, Xuchang 461001, Henan, Peoples R China
基金
中国博士后科学基金;
关键词
Toxicity; Ionic liquids; Quantitative structure-activity relationship; Extreme learning machine; Quantum chemistry descriptors; OXYGEN-REDUCTION; IMIDAZOLIUM; CAPTURE; BIODEGRADABILITY; GRAPHENE; SOLVENTS; DATABASE; IMPACTS;
D O I
10.1016/j.jhazmat.2018.03.025
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Large-scale application of ionic liquids (ILs) hinges on the advancement of designable and eco-friendly nature. Research of the potential toxicity of ILs towards different organisms and trophic levels is insufficient. Quantitative structure-activity relationships (QSAR) model is applied to evaluate the toxicity of ILs towards the leukemia rat cell line (ICP-81). The structures of 57 cations and 21 anions were optimized by quantum chemistry. The electrostatic potential surface area (S-EP) and charge distribution area (S sigma-profile) descriptors are calculated and used to predict the toxicity of ILs. The performance and predictive aptitude of extreme learning machine (ELM) model are analyzed and compared with those of multiple linear regression (MLR) and support vector machine (SVM) models. The highest R-2 and the lowest AARD% and RMSE of the training set, test set and total set for the ELM are observed, which validates the superior performance of the ELM than that of obtained by the MLR and SVM. The applicability domain of the model is assessed by the Williams plot.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 54 条
[1]  
Anastas P.T., 2003, PEER REV DESIGN 12 P
[2]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[3]   Developmental toxicity assessment of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1 mice [J].
Bailey, Melissa M. ;
Townsend, Megan B. ;
Jernigan, Peter L. ;
Sturdivant, John ;
Hough-Troutman, Whitney L. ;
Rasco, Jane F. ;
Swatloski, Richard P. ;
Rogers, Robin D. ;
Hood, Ronald D. .
GREEN CHEMISTRY, 2008, 10 (11) :1213-1217
[4]   Predicting acetyl cholinesterase enzyme inhibition potential of ionic liquids using machine learning approaches: An aid to green chemicals designing [J].
Basant, Nikita ;
Gupta, Shikha ;
Singh, Kunwar P. .
JOURNAL OF MOLECULAR LIQUIDS, 2015, 209 :404-412
[5]   Effect of imidazolium-based ionic liquids on bacterial growth inhibition investigated via experimental and QSAR modelling studies [J].
Ben Ghanem, Ouahid ;
Mutalib, M. I. Abdul ;
El-Harbawi, Mohanad ;
Gonfa, Girma ;
Kait, Chong Fai ;
Alitheen, Noorjahan Banu Mohamed ;
Leveque, Jean-Marc .
JOURNAL OF HAZARDOUS MATERIALS, 2015, 297 :198-206
[6]  
Biswas K., 2011, J AM CHEM SOC, V42, P14760
[7]   Feasible ionic liquid-amine hybrid solvents for carbon dioxide capture [J].
Cao, Lingdi ;
Gao, Jubao ;
Zeng, Shaojuan ;
Dong, Haifeng ;
Gao, Hongshuai ;
Zhang, Xiangping ;
Huang, Junhua .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 66 :120-128
[8]   Imidazole tailored deep eutectic solvents for CO2 capture enhanced by hydrogen bonds [J].
Cao, Lingdi ;
Huang, Junhua ;
Zhang, Xiangping ;
Zhang, Suojiang ;
Gao, Jubao ;
Zeng, Shaojuan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (41) :27306-27316
[9]   Review and performance comparison of SVM- and ELM-based classifiers [J].
Chorowski, Jan ;
Wang, Jian ;
Zurada, Jacek M. .
NEUROCOMPUTING, 2014, 128 :507-516
[10]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411