NORMALIZED SOLUTIONS FOR THE CHERN-SIMONS-SCHRODINGER EQUATION IN R2

被引:48
作者
Li, Gongbao [1 ,2 ]
Luo, Xiao [1 ,2 ]
机构
[1] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
关键词
Chern-Simons-Schrodinger; constrained minimization; bifurcation phenomenon; multiplicity; EXISTENCE; POISSON; MULTIPLICITY;
D O I
10.5186/aasfm.2017.4223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence and multiplicity of solutions with a prescribed L-2-norm for a class of nonlinear Chern Simons Schrodinger equations in R-2 where To get such solutions we look for critical points of the energy functional on the constraints When p = 4, we prove a sufficient condition for the nonexistence of constrain critical points of I on S-r(c) for certain c and get infinitely many minimizers of I on Sr(8 pi). For the value p epsilon (4, +infinity) considered, the functional I is unbounded from below on Sr(c). By using the constrained minimization method on a suitable submanifold of S-r(c), we prove that for certain c > 0, I has a critical point on Sr(c). After that, we get an H-1-bifurcation result of our problem. Moreover, by using a minimax procedure, we prove that there are infinitely many critical points of I restricted on S-r(c) for any c epsilon (0, 4 pi/root p-3).
引用
收藏
页码:405 / 428
页数:24
相关论文
共 36 条
[1]  
Badiale M, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-85729-227-8
[2]  
Bartsch T., 2015, ARXIV150704649
[3]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[4]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[5]  
Bellazzini J., P LONDON MATH SOC
[6]   ON DIPOLAR QUANTUM GASES IN THE UNSTABLE REGIME [J].
Bellazzini, Jacopo ;
Jeanjean, Louis .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :2028-2058
[7]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[8]   Stable standing waves for a class of nonlinear Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02) :267-280
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]   On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrodinger equations [J].
Byeon, Jaeyoung ;
Huh, Hyungjin ;
Seok, Jinmyoung .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) :1285-1316