Simulation of EAST quasi-snowflake discharge by tokamak simulation code

被引:7
作者
Guo, Y. [1 ]
Pironti, A. [2 ,3 ]
Liu, L. [1 ]
Xiao, B. J. [1 ,4 ]
Albanese, R. [2 ,3 ]
Ambrosino, R. [2 ,3 ]
Luo, Z. P. [1 ]
Yuan, Q. P. [1 ]
Calabro, G. [5 ]
Crisanti, F. [5 ]
Xing, Z. [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Univ Cassino, Univ Naples Federico II, CREATE, I-80125 Naples, Italy
[3] Univ Napoli Parthenope, I-80125 Naples, Italy
[4] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Peoples R China
[5] CR Frascati, ENEA UnitaTecn Fus, I-00044 Rome, Italy
基金
中国国家自然科学基金;
关键词
Quasi-Snowflake; Singular value decomposition method; EAST; Tokamak discharge simulation; RECONSTRUCTION;
D O I
10.1016/j.fusengdes.2015.10.010
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Both theory and experiment have proved Snowflake configuration could reduce the heat loads on divertor plate. Due to limitation of PF coils, EAST could only operate with quasi-snowflake (QSF). In 2014 EAST campaign, QSF has been achieved by RZIp control. The next important task is the QSF shape control. As tokamak discharge simulation code, Tokamak Simulation Code (TSC), which has been benchmarked by experimental data, is used to simulate EAST QSF discharge. Singular Value Decomposition (SVD) method, a way to decouple the PP current and control parameter, is implemented in TSC code to simulate the course of QSF shape control. The simulation results show SVD method is a good way for EAST QSF shape control. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
[21]   Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST [J].
Shi, Bo ;
Yang, Jinhong ;
Yang, Cheng ;
Cheng, Desheng ;
Wang, Hui ;
Zhang, Hui ;
Deng, Haifei ;
Qi, Junli ;
Gong, Xianzu ;
Wang, Weihua .
PLASMA SCIENCE & TECHNOLOGY, 2018, 20 (07)
[22]   Neutral beam injection simulation of EAST [J].
Wu, Bin ;
Wang, Jinfang ;
Li, Jibo ;
Wang, Ji ;
Hu, Chundong .
FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) :947-950
[23]   Development of the quasi-optical combiner systems for density profile reflectometers on the EAST tokamak [J].
Wang, Y. M. ;
Zhang, T. ;
Liu, X. M. ;
Zhao, C. W. ;
Qu, H. ;
Li, G. S. ;
Wu, M. F. ;
Ye, K. X. ;
Wen, F. ;
Xiang, H. M. ;
Geng, K. N. ;
Zhong, F. B. ;
Huang, J. ;
Han, X. ;
Zhang, S. B. ;
Liu, S. C. ;
Nan, J. J. ;
Gao, X. .
FUSION ENGINEERING AND DESIGN, 2019, 148
[24]   Optimization Analysis and Simulation of the EAST Cryogenic System [J].
邱立龙 ;
庄明 ;
毛晋 ;
胡良兵 ;
盛林海 .
Plasma Science and Technology, 2012, (11) :1030-1034
[25]   Optimization Analysis and Simulation of the EAST Cryogenic System [J].
Qiu Lilong ;
Zhuang Ming ;
Mao Jin ;
Hu Liangbing ;
Sheng Linhai .
PLASMA SCIENCE & TECHNOLOGY, 2012, 14 (11) :1030-1034
[26]   Numerical Simulation of Toroidal Momentum Transport with Neutral Beam Injection on Tokamak [J].
Wang, Jinfang ;
Wu, Bin ;
Hu, Chundong .
JOURNAL OF FUSION ENERGY, 2015, 34 (01) :133-139
[27]   Predictive Calculation of Neutral Beam Heating Plasmas in EAST Tokamak by NUBEAM Code for Certain Parameter Ranges [J].
Ni Qionglin ;
Fan Tieshuan ;
Zhang Xing ;
Zhang Cheng ;
Ren Qilong ;
Hu Chundong .
PLASMA SCIENCE & TECHNOLOGY, 2010, 12 (06) :661-667
[28]   Predictive Calculation of Neutral Beam Heating Plasmas in EAST Tokamak by NUBEAM Code for Certain Parameter Ranges [J].
倪琼琳 ;
樊铁栓 ;
张兴 ;
张澄 ;
任启龙 ;
胡纯栋 .
Plasma Science and Technology, 2010, (06) :661-667
[29]   Force analysis and simulation of a remote inspection robot for EAST [J].
Wu, Zun ;
Wu, Baoyuan ;
Zhang, Qiang ;
Wang, Zengfu .
PROCEEDINGS OF THE 2015 JOINT INTERNATIONAL MECHANICAL, ELECTRONIC AND INFORMATION TECHNOLOGY CONFERENCE (JIMET 2015), 2015, 10 :1142-1146
[30]   Process Modeling and Dynamic Simulation for EAST Helium Refrigerator [J].
陆小飞 ;
傅鹏 ;
庄明 ;
邱立龙 ;
胡良兵 .
Plasma Science and Technology, 2016, (06) :693-698