Nonparametric multiple test procedures with data-driven order of hypotheses and with weighted hypotheses

被引:25
|
作者
Kropf, S
Läuter, J
Eszlinger, M
Krohn, K
Paschke, R
机构
[1] Otto Von Guericke Univ, Inst Biometry & Med Informat, D-39120 Magdeburg, Germany
[2] Univ Leipzig, Dept Med 111, Leipzig, Germany
[3] Univ Leipzig, Interdisciplinary Ctr Clin Res, Leipzig, Germany
关键词
multiple tests; ordered hypotheses; nonparametric tests; rank statistics; order statistics;
D O I
10.1016/j.jspi.2003.07.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, Kropf (Shaker Verlag, Aachen, 2000) and Kropf and Lauter (Biometrial J. 44(7) 2002 789) proposed a procedure for testing separate hypotheses concerning the single variables of a multivariate normal population with strong control of the familywise type I error. The procedure is particularly focussed on situations where all variables have approximately equal variances. It establishes a suitable data-driven order of hypotheses and carries out unadjusted tests in that order until the first nonsignificant result. This proposal has been generalised by Westfall et al. (in: Benjamini, Y., Bretz, F., Sarkar, S.K. (Eds.), Recent developments in multiple comparison procedures, IMS Lecture Notes and Monograph Series, IMS, Haywood CA, 2004) in a weighted Bonferroni-Holm procedure that can be tuned with a free parameter eta and involves the above procedure as limiting case for eta --> infinity. Here, a nonparametric counterpart is given. Whereas the original parametric procedures utilise properties of spherically distributed matrices to maintain the exact type I error despite the data-dependent sorting or weighting of the variables, the nonparametric procedure exploits the independence of rank and order statistics under the null hypothesis to arrange the variables in a suitable order for unadjusted sequential testing or to weight the variables. Again, the procedures are sensible if the variables have a similar variance. The procedures are demonstrated with data from gene-expression studies in hot or cold thyroid nodules using Affymetrix GeneChips. Furthermore, simulation results are shown to consider the power under various conditions. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 50 条
  • [1] Data-driven hypotheses
    van Helden, Paul
    EMBO REPORTS, 2013, 14 (02) : 104 - 104
  • [2] A Data-Driven Exploration of Hypotheses on Disease Dynamics
    Bueno, Marcos L. P.
    Hommersom, Arjen
    Lucas, Peter J. F.
    Janzing, Joost
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2019, 2019, 11526 : 170 - 179
  • [3] Tests for differentiation in gene expression using a data-driven order or weights for hypotheses
    Hommel, G
    Kropf, S
    BIOMETRICAL JOURNAL, 2005, 47 (04) : 554 - 562
  • [4] Data-driven efficient score tests for deconvolution hypotheses
    Langovoy, M. A.
    INVERSE PROBLEMS, 2008, 24 (02)
  • [5] Data-Driven Methods for the Formulation and Visualization of Causal Hypotheses
    Kuehnert, Christian
    Groell, Lutz
    Heizmann, Michael
    Reischl, Markus
    Mikut, Ralf
    AT-AUTOMATISIERUNGSTECHNIK, 2012, 60 (10) : 630 - 640
  • [6] Micro array based gene expression analysis using parametric multivariate tests per gene a generalized application of multiple procedures with data-driven order of hypotheses
    Schuster, E
    Kropf, S
    Roeder, I
    BIOMETRICAL JOURNAL, 2004, 46 (06) : 687 - 698
  • [7] NONPARAMETRIC TEST FOR COMPOSITE HYPOTHESES IN SURVIVAL ANALYSIS
    TOLLEY, HD
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1978, 30 (02) : 281 - 295
  • [8] Multiple tests for different sets of variables using a data-driven ordering of hypotheses, with an application to gene expression data
    Kropf, S
    Läuter, J
    BIOMETRICAL JOURNAL, 2002, 44 (07) : 789 - 800
  • [9] Integrative computational epigenomics to build data-driven gene regulation hypotheses
    Chen, Tyrone
    Tyagi, Sonika
    GIGASCIENCE, 2020, 9 (06):
  • [10] Data-Driven Generation of Medical-Research Hypotheses in Cancer Patients
    Chang, Hsin-Hsiung
    Chiang, Jung-Hsien
    Chu, Cheng-Chung
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 626 - 631