Two positive solutions for second-order quasilinear differential equation boundary value problems with sign changing nonlinearities

被引:12
作者
Guo, YP [1 ]
Tian, JW
机构
[1] Ocean Univ China, Marine Environm Coll, Qingdao 266003, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Sci, Hebei 050018, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear differential equation; positive symmetric solution; fixed point theorem in cones;
D O I
10.1016/j.cam.2003.12.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the second order quasilinear differential equation (Phi(y'))'+ q(t)f(t, y) = 0, 0 < t < 1 subject to Dirichlet boundary conditions and mixed boundary conditions is studied, where f is allowed to change sign, Phi(V) = \v\(p-2)v, p > 1. We show the existence of at least two positive solutions by using a new fixed point theorem in cones. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:345 / 357
页数:13
相关论文
共 14 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   Twin solutions of boundary value problems for ordinary differential equations and finite difference equations [J].
Avery, RI ;
Chyan, CJ ;
Henderson, J .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (3-5) :695-704
[3]   Three symmetric positive solutions for a second-order boundary value problem [J].
Avery, RI ;
Henderson, J .
APPLIED MATHEMATICS LETTERS, 2000, 13 (03) :1-7
[4]  
AVERY RI, 1999, MATH SCI RES HOT LIN, V3, P9
[5]  
AVERY RI, 1998, MSR HOT LINE, V2, P1
[6]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]  
Dugundji J., 1951, PAC J MATH, V1, P353
[8]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[9]   MULTIPLE POSITIVE SOLUTIONS OF SOME BOUNDARY-VALUE-PROBLEMS [J].
ERBE, LH ;
HU, SC ;
WANG, HY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :640-648
[10]  
Guo D., 1988, NONLINEAR PROBLEMS A