Stability Analysis of a System of Exponential Difference Equations

被引:20
作者
Din, Q. [1 ]
Khan, K. A. [2 ]
Nosheen, A. [2 ]
机构
[1] Univ Poonch Rawalakot, Dept Math, Rawalakot 12350, Pakistan
[2] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
关键词
PERIODIC-SOLUTIONS; GLOBAL STABILITY; DISCRETE;
D O I
10.1155/2014/375890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundedness character and persistence, existence and uniqueness of positive equilibrium, local and global behavior, and rate of convergence of positive solutions of the following system of exponential difference equations: x(n+1) = (alpha(1) + beta(1)e(-xn) + + gamma(1)e(-xn-1))/(a(1) + b(1)y(n) + c(1)y(n-1)), y(n+1) = (alpha(2) + beta(2)e(-yn) + gamma 2e(-yn-1))/(a(2) + b(2)x(n) + c(2)x(n-1)), where the parameters alpha(i), beta(i), gamma(i), a(i), b(i), and c(i) for i epsilon {1, 2} and initial conditions x(0), x(-1), y(0), and y(-1) are positive real numbers. Furthermore, by constructing a discrete Lyapunov function, we obtain the global asymptotic stability of the positive equilibrium. Some numerical examples are given to verify our theoretical results.
引用
收藏
页数:11
相关论文
共 19 条
[2]  
[Anonymous], 2014, NETW BIOL
[3]  
[Anonymous], 2013, Nonlinear Difference Equations: Theory with Applications to Social Science Models
[4]  
Din Q., 2014, Computational Ecology and Software, V4, P89
[5]   Behavior of a Competitive System of Second-Order Difference Equations [J].
Din, Q. ;
Ibrahim, T. F. ;
Khan, K. A. .
SCIENTIFIC WORLD JOURNAL, 2014,
[6]   Global stability of a population model [J].
Din, Q. .
CHAOS SOLITONS & FRACTALS, 2014, 59 :119-128
[7]   Dynamics of a discrete Lotka-Volterra model [J].
Din, Qamar .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[8]   Global character of a host-parasite model [J].
Din, Qamar ;
Donchev, Tzanko .
CHAOS SOLITONS & FRACTALS, 2013, 54 :1-7
[9]   On the difference equation xn+1=α+βxn-1e-xn [J].
El-Metwally, H ;
Grove, EA ;
Ladas, G ;
Levins, R ;
Radin, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) :4623-4634
[10]   GLOBAL STABILITY FOR A CLASS OF DISCRETE SIR EPIDEMIC MODELS [J].
Enatsu, Yoichi ;
Nakata, Yukihiko ;
Muroya, Yoshiaki .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (02) :347-361