Secure Erasure Codes With Partial Reconstructibility

被引:1
作者
Dau, Hoang [1 ]
Song, Wentu [2 ]
Sprintson, Alex [3 ]
Yuen, Chau [2 ]
机构
[1] RMIT Univ, Discipline Comp Sci & Informat Technol, Melbourne, Vic 3000, Australia
[2] Singapore Univ Technol & Design, Engn Prod Dev Pillar, Singapore 487372, Singapore
[3] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
基金
新加坡国家研究基金会;
关键词
Erasure codes; security; partial reconstruction; distributed storage system; data streaming; STORAGE;
D O I
10.1109/TIT.2020.2988868
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We design p-reconstructible mu-secure [n, k] erasure coding schemes (0 <= mu < k, 1 <= p <= k - mu, p vertical bar (k - mu)), which encode k - mu information symbols into n coded symbols and moreover, satisfy the k-out-of-n property and the following two properties: (P1) strongly mu-secure - an adversary that accesses at most mu coded symbols gains no information about the information symbols; (P2) p-reconstructible - a legitimate user can reconstruct each predetermined group of p information symbols by accessing a predetermined group of mu + p coded symbols. The scheme is perfectly p-reconstructible mu-secure if apart from (P1)-(P2), it also satisfies the following additional property: (P3) weakly (mu + p - 1)-secure - an adversary that accesses at most mu+ p- 1 coded symbols cannot reconstruct any single information symbol. In contrast with most related work in the literature, our codes guarantee partial reconstructibility due to (P2): once the user accesses p more coded symbols than the threshold mu, it can reconstruct a specific group of p information symbols. We provide an explicit construction of p-reconstructible mu-secure coding schemes for all mu and p over any field of size at least n + 1. We also establish a randomized construction for perfectly p-reconstructible mu-secure coding schemes for all mu and p satisfying k >= 2(mu + p) - 1 over any field of size at least n + k + k(3)/4.
引用
收藏
页码:6809 / 6822
页数:14
相关论文
共 25 条
  • [1] [Anonymous], 2005, P 1 WORKSH NETW COD
  • [2] Theory of Secure Network Coding
    Cai, Ning
    Chan, Terence
    [J]. PROCEEDINGS OF THE IEEE, 2011, 99 (03) : 421 - 437
  • [3] Cover T. M., 2005, ELEMENTS INFORM THEO, P103
  • [4] Dau SH, 2015, ANN ALLERTON CONF, P949, DOI 10.1109/ALLERTON.2015.7447110
  • [5] Dau SH, 2015, IEEE ICC, P388, DOI 10.1109/ICC.2015.7248352
  • [6] Dau SH, 2014, IEEE INT SYMP INFO, P1967, DOI 10.1109/ISIT.2014.6875177
  • [7] Ford D., 2010, P USENIX C OP SYST D, P1013
  • [8] Ghemawat S., 2003, The Google file system, DOI 10.1145/1165389.945450
  • [9] A random linear network coding approach to multicast
    Ho, Tracey
    Medard, Muriel
    Koetter, Ralf
    Karger, David R.
    Effros, Michelle
    Shi, Jun
    Leong, Ben
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) : 4413 - 4430
  • [10] Rapid Recovery for Systems with Scarce Faults
    Huang, Chung-Hao
    Peled, Doron
    Schewe, Sven
    Wang, Farn
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (96): : 15 - 28