Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras

被引:29
作者
Adashev, J. K. [1 ]
Camacho, L. M. [2 ]
Omirov, B. A. [1 ]
机构
[1] Natl Univ Uzbekistan, Inst Math, Tashkent 100125, Uzbekistan
[2] Univ Seville, Dept Matemat Aplicada 1, Avda Reina Mercedes S-N, E-41012 Seville, Spain
关键词
Leibniz algebra; Filiform algebra; Quasi-filiform algebra; Natural gradation; Characteristic sequence; 2-cocycles; Central extension;
D O I
10.1016/j.jalgebra.2017.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform non-Lie Leibniz algebras are described up to isomorphism. It is shown that k-dimensional central extensions (k >= 5) of these algebras are split. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:461 / 486
页数:26
相关论文
共 13 条
  • [1] On some classes of nilpotent Leibniz algebras
    Ayupov, SA
    Omirov, BA
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (01) : 15 - 24
  • [2] Cahen M., 1989, B ACAD ROYAL BELG, V75, P315, DOI 10.3406/barb.1989.57848
  • [3] THE CLASSIFICATION OF NATURALLY GRADED p-FILIFORM LEIBNIZ ALGEBRAS
    Camacho, L. M.
    Gomez, J. R.
    Gonzalez, A. J.
    Omirov, B. A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (01) : 153 - 168
  • [4] NATURALLY GRADED 2-FILIFORM LEIBNIZ ALGEBRAS
    Camacho, L. M.
    Gomez, J. R.
    Gonzalez, A. J.
    Omirov, B. A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3671 - 3685
  • [5] Naturally graded quasi-filiform Leibniz algebras
    Camacho, L. M.
    Gomez, J. R.
    Gonzalez, A. J.
    Omirov, B. A.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (05) : 527 - 539
  • [6] de Jager E.M., 1997, STUDIES MATH PHYS, V7
  • [7] On Classification of Filiform Leibniz Algebras
    Gomez, J. R.
    Omirov, B. A.
    [J]. ALGEBRA COLLOQUIUM, 2015, 22 : 757 - 774
  • [8] Loday J.-L., 1993, Enseign. Math, V39, P269
  • [9] Rakhimov I.S., 2009, Int. J. Algebra, V3, P271
  • [10] ON ONE-DIMENSIONAL LEIBNIZ CENTRAL EXTENSIONS OF A FILIFORM LIE ALGEBRA
    Rakhimov, Isamiddin S.
    Hassan, Munther A.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (02) : 205 - 224