A Method of Grasping Detection for Kiwifruit Harvesting Robot Based on Deep Learning

被引:11
|
作者
Ma, Li [1 ]
He, Zhi [1 ]
Zhu, Yutao [1 ]
Jia, Liangsheng [1 ]
Wang, Yinchu [1 ]
Ding, Xinting [1 ]
Cui, Yongjie [1 ,2 ,3 ]
机构
[1] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Agr Internet Things, Yangling 712100, Peoples R China
[3] Shaanxi Key Lab Agr Informat Percept & Intelligent, Yangling 712100, Peoples R China
来源
AGRONOMY-BASEL | 2022年 / 12卷 / 12期
基金
中国国家自然科学基金;
关键词
kiwifruit; harvesting robot; grasping angle; GG-CNN; deep learning; ALGORITHM;
D O I
10.3390/agronomy12123096
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Kiwifruit harvesting with robotics can be troublesome due to the clustering feature. The gripper of the end effector will easily cause unstable fruit grasping, or the bending and separation action will interfere with the neighboring fruit because of an inappropriate grasping angle, which will further affect the success rate. Therefore, predicting the correct grasping angle for each fruit can guide the gripper to safely approach, grasp, bend and separate the fruit. To improve the grasping rate and harvesting success rate, this study proposed a grasping detection method for a kiwifruit harvesting robot based on the GG-CNN2. Based on the vertical downward growth characteristics of kiwifruit, the grasping configuration of the manipulator was defined. The clustered kiwifruit was mainly divided into single fruit, linear cluster, and other cluster, and the grasping dataset included depth images, color images, and grasping labels. The GG-CNN2 was improved based on focal loss to prevent the algorithm from generating the optimal grasping configuration in the background or at the edge of the fruit. The performance test of the grasping detection network and the verification test of robotic picking were carried out in orchards. The results showed that the number of parameters of GG-CNN2 was 66.7 k, the average image calculation speed was 58 ms, and the average grasping detection accuracy was 76.0%, which ensures the grasping detection can run in real time. The verification test results indicated that the manipulator combined with the position information provided by the target detection network YOLO v4 and the grasping angle provided by the grasping detection network GG-CNN2 could achieve a harvesting success rate of 88.7% and a fruit drop rate of 4.8%; the average picking time was 6.5 s. Compared with the method in which the target detection network only provides fruit position information, this method presented the advantages of harvesting rate and fruit drop rate when harvesting linear clusters, especially other cluster, and the picking time was slightly increased. Therefore, the grasping detection method proposed in this study is suitable for near-neighbor multi-kiwifruit picking, and it can improve the success rate of robotic harvesting.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] The obstacles detection for outdoor robot based on computer vision in deep learning
    Chen, Hsuan
    Chiu, Wen-Hsin
    Yu, Jian-Cheng
    Chen, Hsiang-Chieh
    Wang, Wen-June
    2019 IEEE 9TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE-BERLIN), 2019, : 184 - 188
  • [32] Object Detection and Recognition of Intelligent Service Robot Based on Deep Learning
    Zhang, Yanan
    Wang, Hongyu
    Xu, Fang
    2017 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) AND IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), 2017, : 171 - 176
  • [33] Fruit Detection and Recognition Based on Deep Learning for Automatic Harvesting: An Overview and Review
    Xiao, Feng
    Wang, Haibin
    Xu, Yueqin
    Zhang, Ruiqing
    AGRONOMY-BASEL, 2023, 13 (06):
  • [34] Study on hyperspectral detection and identification of invisible damage on kiwifruit by deep learning
    Wang Yan-xiang
    Zhang Yan
    Yang Cheng-ya
    Meng Qing-long
    Shang Jing
    FIFTH SYMPOSIUM ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2019, 11023
  • [35] Defect Insulator Detection Method Based on Deep Learning
    Liu, Song
    Xiao, Jin
    Hu, Xiaoguang
    Pan, Lei
    Liu, Lei
    Long, Fei
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1622 - 1627
  • [36] An Adaptive Corner Detection Method Based on Deep Learning
    Wang, Liang
    Han, Kesheng
    Sun, Hongfei
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8478 - 8482
  • [37] Research on Face Detection Method Based on Deep Learning
    Sun, Xiaojie
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 200 - 203
  • [38] Research on Fatigue Detection Method Based on Deep Learning
    Yuan, Yasheng
    Dai, Fengzhi
    An, Lingran
    Yin, Di
    Zhu, Yuxuan
    Yan, Yujie
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 644 - 647
  • [39] Abnormal motion signal detection of mobile robot based on deep learning
    Zhang, Hongxia
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2022, 22 (06) : 1955 - 1966
  • [40] Detection method for isolation details based on deep learning
    Dang, Yu
    Chen, Yijie
    He, Yizhe
    He, Ya
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2024, 54 (04): : 944 - 951