Leibniz central extensions of Lie superalgebras

被引:1
作者
Wang, Yan [1 ]
Pei, Yufeng [2 ]
Deng, Shaoqiang [3 ,4 ]
机构
[1] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Lie superalgebra; Leibniz superalgebra; Leibniz central extension; UNIVERSAL CENTRAL EXTENSIONS; COHOMOLOGY; ALGEBRAS; HOMOLOGY;
D O I
10.1142/S0219498814500522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a general theory on Leibniz central extensions of Lie superalgebras and apply it to determine the second Leibniz cohomology groups for several classes of Lie superalgebras, including classical Lie superalgebras, Neveu-Schwarz superalgebras, differentiably simple Lie superalgebras, and affine (toroidal) Kac-Moody Lie superalgebras.
引用
收藏
页数:20
相关论文
共 36 条
[1]   ON THE GENERATORS OF LIE-SUPERALGEBRAS [J].
ALBUQUERQUE, H ;
ELDUQUE, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 181 :45-61
[2]   Socle and some invariants of quadratic Lie superalgebras [J].
Benayadi, S .
JOURNAL OF ALGEBRA, 2003, 261 (02) :245-291
[3]  
Biyogmam G., 2011, J PURE APPL ALGEBRA, V215, P245
[4]   ON UNIVERSAL CENTRAL EXTENSIONS OF LEIBNIZ ALGEBRAS [J].
Casas, J. M. ;
Corral, N. .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) :2104-2120
[5]  
Chen H., 2011, ALGEBR REPRESENT TH, V14, P1
[6]   REPRESENTATIONS OF CENTRAL EXTENSIONS OF DIFFERENTIABLY SIMPLE LIE-SUPERALGEBRAS [J].
CHENG, SJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :555-568
[7]   Steinberg-Leibniz algebras and superalgebras [J].
Dong, L .
JOURNAL OF ALGEBRA, 2005, 283 (01) :199-221
[8]  
Dzhumadil'daev AS, 1999, P 3 INT WORKSH, P124
[9]  
Frappat L., 2000, Dictionary on Lie superalgebras
[10]   The second Leibniz homology group for Kac-Moody Lie algebras [J].
Gao, Y .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :25-33