Mechanochemical synthesis of MnZn ferrite nanoparticles suitable for biocompatible ferrofluids

被引:18
作者
Arana, Mercedes [1 ]
Bercoff, Paula G. [1 ]
Jacobo, Silvia E. [2 ]
Mendoza Zelis, Pedro [3 ]
Pasquevich, Gustavo A. [3 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, IFEG, CONICET, RA-5000 Cordoba, Argentina
[2] Univ Buenos Aires, INTECIN, CONICET, LAFMACEL, Buenos Aires, DF, Argentina
[3] Univ Nacl La Plata, Fac Ciencias Exactas, IFLP Conicet, Dept Fis, La Plata, Argentina
关键词
Mechanochemistry; MnZn nanoparticles; Biocompatible ferrofluid; MAGNETIC-PROPERTIES; HYPERTHERMIA;
D O I
10.1016/j.ceramint.2015.09.103
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mn0.4Zn0.6Fe2O4 nanoparticles (NPs) were synthesized by the mechanochemical method, starting from elemental oxides. Structural and magnetic properties of the NPs were investigated by X ray diffraction (XRD), vibrating sample magnetometry (VSM) and both scanning and transmission electron microscopy (SEM and TEM). XRD measurements show that MnZn ferrite is already present after 15 min of milling. After milling for 120 min, the resulting powder is almost completely single-phase without the need of any thermal treatment. Magnetization curves for samples with different milling times show saturation magnetizations ranging from 12.2 emu/g -after 15 min to 50.3 emu/g -after 120 min. Coercive field and remanent magnetization are negligible for all samples, in agreement with a superparamagnetic behavior. NPs with mean size of 8 nm were separated by centrifugation and were coated with chitosan for the preparation of a ferrofluid, which showed good stability for 12 h. The Intrinsic Loss Parameter (MP) of this fluid indicates that the mechanochemical method can be a good alternative for the synthesis of the usual Fe-oxides ferrofluids used in hyperthermia. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:1545 / 1551
页数:7
相关论文
共 28 条
[1]   Synthesis of Fe2O3 concentrations and sintering temperature on FTIR and magnetic susceptibility measured from 4 to 300 K of monolith silica gel prepared by sol-gel technique [J].
Battisha, I. K. ;
Afifya, H. H. ;
Ibrahim, M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 306 (02) :211-217
[2]  
CHAN DCF, 1993, J MAGN MAGN MATER, V122, P374, DOI 10.1016/0304-8853(93)91113-L
[3]  
Chicinas I, 2006, J OPTOELECTRON ADV M, V8, P439
[4]  
Dormann J.L., 1997, ADV CHEM PHYS, P345
[5]   Stability and Relaxation Mechanisms of Citric Acid Coated Magnetite Nanoparticles for Magnetic Hyperthermia [J].
Elisa de Sousa, M. ;
Fernandez van Raap, Marcela B. ;
Rivas, Patricia C. ;
Mendoza Zelis, Pedro ;
Girardin, Pablo ;
Pasquevich, Gustavo A. ;
Alessandrini, Jose L. ;
Muraca, Diego ;
Sanchez, Francisco H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (10) :5436-5445
[6]   THE CHEMICAL-KINETICS OF MECHANICAL ALLOYING [J].
FORRESTER, JS ;
SCHAFFER, GB .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1995, 26 (03) :725-730
[7]   Magnetic properties of nanostructured MnZn ferrite [J].
Isfahani, Mohammad Javad Nasr ;
Myndyk, Maxym ;
Menzel, Dirk ;
Feldhoff, Armin ;
Amighian, Jamshid ;
Sepelak, Vladimir .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (03) :152-156
[8]  
Jan Smit H.P.J.W., 1959, FERRITES PHYS PROPER
[9]   Hyperthermia classic commentary: 'Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia' by Andreas Jordan et al., International Journal of Hyperthermia, 1993;9:51-68. [J].
Jordan, Andreas .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2009, 25 (07) :512-516
[10]   Suitability of commercial colloids for magnetic hyperthermia [J].
Kallumadil, Mathew ;
Tada, Masaru ;
Nakagawa, Takashi ;
Abe, Masanori ;
Southern, Paul ;
Pankhurst, Quentin A. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (10) :1509-1513