Level set approach for fractional mean curvature flows

被引:48
|
作者
Imbert, Cyril [1 ]
机构
[1] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
关键词
Fractional mean curvature; mean curvature; geometric flows; dislocation dynamics; level set approach; stability results; comparison principles; generalized flows; DISLOCATION DYNAMICS; VISCOSITY SOLUTIONS; FRONT PROPAGATION; UNIQUENESS; EXISTENCE; EQUATIONS; MOTION;
D O I
10.4171/IFB/207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the study of a geometric flow whose law involves a singular integral operator. This operator is used to define a non-local mean curvature of a set. Moreover, the associated flow appears in two important applications: dislocation dynamics and phasefield theory for fractional reaction-diffusion equations. It is defined by using the level set method. The main results of this paper are: on one hand, the proper level set formulation of the geometric flow; on the other hand, stability and comparison results for the geometric equation associated with the flow.
引用
收藏
页码:153 / 176
页数:24
相关论文
共 50 条
  • [11] FATTENING AND COMPARISON PRINCIPLE FOR LEVEL-SET EQUATIONS OF MEAN CURVATURE TYPE
    Liu, Qing
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (06) : 2518 - 2541
  • [12] Level-set forced mean curvature flow with the Neumann boundary condition
    Jang, Jiwoong
    Kwon, Dohyun
    Mitake, Hiroyoshi
    V. Tran, Hung
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 168 : 143 - 167
  • [13] Level set mean curvature flow with Neumann boundary conditions
    Aimi, Satoru
    HOKKAIDO MATHEMATICAL JOURNAL, 2023, 52 (01) : 41 - 64
  • [14] REMARKS ON LARGE TIME BEHAVIOR OF LEVEL-SET MEAN CURVATURE FLOW EQUATIONS WITH DRIVING AND SOURCE TERMS
    Giga, Yoshikazu
    Mitake, Hiroyoshi
    Tran, Hung, V
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (10): : 3983 - 3999
  • [15] Approximation rates for regularized level set power mean curvature flow
    Kroener, Heiko
    PORTUGALIAE MATHEMATICA, 2017, 74 (02) : 115 - 126
  • [16] Level Set Regularization Using Geometric Flows
    Alvarez, Luis
    Cuenca, Carmelo
    Ildefonso Diaz, Jesus
    Gonzalez, Esther
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (02): : 1493 - 1523
  • [17] Singular set and curvature blow-up rate of the level set flow
    Guo, Siao-Hao
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (807): : 1 - 29
  • [18] Stability results for nonlocal geometric evolutions and limit cases for fractional mean curvature flows
    Cesaroni, A.
    De Luca, L.
    Novaga, M.
    Ponsiglione, M.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (07) : 1344 - 1371
  • [19] On mean curvature flow with forcing
    Kim, Inwon
    Kwon, Dohyun
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (05) : 414 - 455
  • [20] An Alternating Direction Implicit Method for Mean Curvature Flows
    Zhou, Han
    Li, Shuwang
    Ying, Wenjun
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (03)