IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

被引:29
作者
Moriarty, Patrick [1 ]
Rodrigo, Javier Sanz [2 ]
Gancarski, Pawel [2 ]
Chuchfield, Matthew [2 ]
Naughton, Jonathan W. [3 ]
Hansen, Kurt S. [4 ]
Machefaux, Ewan [4 ]
Maguire, Eoghan [5 ]
Castellani, Francesco [6 ]
Terzi, Ludovico [7 ]
Breton, Simon-Philippe [8 ]
Ueda, Yuko [9 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] CENER Natl Renewable Energy Ctr, Golden, CO USA
[3] Univ Wyoming, Laramie, WY 82071 USA
[4] Tech Univ Denmark, Lyngby, Denmark
[5] Vattenfall, Solna, Sweden
[6] Univ Perugia, I-06100 Perugia, Italy
[7] Sorgenia Green, London, England
[8] Uppsala Univ, S-75105 Uppsala, Sweden
[9] Wind Energy Inst Tokyo, Tokyo, Japan
来源
SCIENCE OF MAKING TORQUE FROM WIND 2014 (TORQUE 2014) | 2014年 / 524卷
关键词
VALIDATION;
D O I
10.1088/1742-6596/524/1/012185
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development.
引用
收藏
页数:11
相关论文
共 35 条
  • [11] Crespo A, 1986, EUR WIND EN C EWEC
  • [12] Crespo A., 1999, Wind Energy, V2, P1, DOI 10.1002/(SICI)1099-1824(199901/03)2:13.0.CO
  • [13] 2-7
  • [14] Curchfield MJ, 2012, 50 AIAA AER SCI M
  • [15] Dahlberg J. A., 2009, 61 LG
  • [16] An extended k-ε model for turbulent flow through horizontal-axis wind turbines
    El Kasmi, Amina
    Masson, Christian
    [J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2008, 96 (01) : 103 - 122
  • [17] Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm
    Gaumond, M.
    Rethore, P. -E.
    Ott, S.
    Pena, A.
    Bechmann, A.
    Hansen, K. S.
    [J]. WIND ENERGY, 2014, 17 (08) : 1169 - 1178
  • [18] Hansen K, 2011, ECNE11013 UPWIND
  • [19] The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm
    Hansen, Kurt S.
    Barthelmie, Rebecca J.
    Jensen, Leo E.
    Sommer, Anders
    [J]. WIND ENERGY, 2012, 15 (01) : 183 - 196
  • [20] Analysis of Numerically Generated Wake Structures
    Ivanell, Stefan
    Sorensen, Jens N.
    Mikkelsen, Robert
    Henningson, Dan
    [J]. WIND ENERGY, 2009, 12 (01) : 63 - 80