Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly-N-acetylglucosamine

被引:36
作者
Soliman, Caroline [1 ]
Walduck, Anna K. [1 ]
Yuriev, Elizabeth [2 ]
Richards, Jack S. [3 ,4 ,5 ,6 ]
Cywes-Bentley, Colette [7 ]
Pier, Gerald B. [7 ]
Ramsland, Paul A. [1 ,3 ,8 ,9 ]
机构
[1] RMIT Univ, Sch Sci, Plenty Rd, Bundoora, Vic 3083, Australia
[2] Monash Univ, Monash Inst Pharmaceut Sci, Med Chem, Parkville, Vic 3052, Australia
[3] Burnet Inst, Dis Eliminat Program, Melbourne, Vic 3004, Australia
[4] Royal Melbourne Hosp, Victorian Infect Dis Serv, Parkville, Vic 3052, Australia
[5] Univ Melbourne, Dept Med, Parkville, Vic 3052, Australia
[6] Alfred Hosp, Dept Infect Dis, Cent Clin Sch, Melbourne, Vic 3004, Australia
[7] Harvard Med Sch, Div Infect Dis, Dept Med, Brigham & Womens Hosp, Boston, MA 02115 USA
[8] Monash Univ, Dept Immunol, Cent Clin Sch, Melbourne, Vic 3004, Australia
[9] Univ Melbourne, Dept Surg, Austin Hlth, Heidelberg, Vic 3084, Australia
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
antibiotic resistance; carbohydrate-binding protein; crystal structure; vaccine development; monoclonal antibody; Staphylococcus aureus (S; aureus); biofilm; antibody structure; poly-N-acetyl-D-glucosamine; MONOCLONAL-ANTIBODIES; SHIGELLA-FLEXNERI; RECOGNITION; LIPOPOLYSACCHARIDE; RESISTANCE; FRAGMENTS; ANTIGEN; PNAG; FAB;
D O I
10.1074/jbc.RA117.001170
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In response to the widespread emergence of antibiotic-resistant microbes, new therapeutic agents are required for many human pathogens. A non-mammalian polysaccharide, poly-N-acetyl-d-glucosamine (PNAG), is produced by bacteria, fungi, and protozoan parasites. Antibodies that bind to PNAG and its deacetylated form (dPNAG) exhibit promising in vitro and in vivo activities against many microbes. A human IgG1 mAb (F598) that binds both PNAG and dPNAG has opsonic and protective activities against multiple microbial pathogens and is undergoing preclinical and clinical assessments as a broad-spectrum antimicrobial therapy. Here, to understand how F598 targets PNAG, we determined crystal structures of the unliganded F598 antigen-binding fragment (Fab) and its complexes with N-acetyl-d-glucosamine (GlcNAc) and a PNAG oligosaccharide. We found that F598 recognizes PNAG through a large groove-shaped binding site that traverses the entire light- and heavy-chain interface and accommodates at least five GlcNAc residues. The Fab-GlcNAc complex revealed a deep binding pocket in which the monosaccharide and a core GlcNAc of the oligosaccharide were almost identically positioned, suggesting an anchored binding mechanism of PNAG by F598. The Fab used in our structural analyses retained binding to PNAG on the surface of an antibiotic-resistant, biofilm-forming strain of Staphylococcus aureus. Additionally, a model of intact F598 binding to two pentasaccharide epitopes indicates that the Fab arms can span at least 40 GlcNAc residues on an extended PNAG chain. Our findings unravel the structural basis for F598 binding to PNAG on microbial surfaces and biofilms.
引用
收藏
页码:5079 / 5089
页数:11
相关论文
共 46 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Privateer: software for the conformational validation of carbohydrate structures [J].
Agirre, Jon ;
Iglesias-Fernandez, Javier ;
Rovira, Carme ;
Davies, Gideon J. ;
Wilson, Keith S. ;
Cowtan, Kevin D. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2015, 22 (11) :833-834
[3]   Chemical Biology Approaches to Designing Defined Carbohydrate Vaccines [J].
Anish, Chakkumkal ;
Schumann, Benjamin ;
Pereira, Claney Lebev ;
Seeberger, Peter H. .
CHEMISTRY & BIOLOGY, 2014, 21 (01) :38-50
[4]   Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects [J].
Arciola, Carla Renata ;
Campoccia, Davide ;
Ravaioli, Stefano ;
Montanaro, Lucio .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2015, 5
[5]   Editorial: Bacterial pathogens, antibiotics and antibiotic resistance [J].
Banin, Ehud ;
Hughes, Diarmaid ;
Kuipers, Oscar P. .
FEMS MICROBIOLOGY REVIEWS, 2017, 41 (03) :450-452
[6]   Structure of a protective epitope of group B Streptococcus type III capsular polysaccharide [J].
Carboni, Filippo ;
Adamo, Roberto ;
Fabbrini, Monica ;
De Ricco, Riccardo ;
Cattaneo, Vittorio ;
Brogioni, Barbara ;
Veggi, Daniele ;
Pinto, Vittoria ;
Passalacqua, Irene ;
Oldrini, Davide ;
Rappuoli, Rino ;
Malito, Enrico ;
Margarit, Immaculada y Ros ;
Berti, Francesco .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (19) :5017-5022
[7]  
Coleman J. P., 2011, XPHARM COMPREHENSIVE, P1
[8]   Bacterial biofilms: A common cause of persistent infections [J].
Costerton, JW ;
Stewart, PS ;
Greenberg, EP .
SCIENCE, 1999, 284 (5418) :1318-1322
[9]   RECOGNITION OF A CARBOHYDRATE ANTIGENIC DETERMINANT OF SALMONELLA BY AN ANTIBODY [J].
CYGLER, M ;
WU, S ;
ZDANOV, A ;
BUNDLE, DR ;
ROSE, DR .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1993, 21 (02) :437-441
[10]   Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens [J].
Cywes-Bentley, Colette ;
Skurnik, David ;
Zaidi, Tanweer ;
Roux, Damien ;
DeOliveira, Rosane B. ;
Garrett, Wendy S. ;
Lu, Xi ;
O'Malley, Jennifer ;
Kinzel, Kathryn ;
Zaidi, Tauqeer ;
Rey, Astrid ;
Perrin, Christophe ;
Fichorova, Raina N. ;
Kayatani, Alexander K. K. ;
Maira-Litran, Tomas ;
Gening, Marina L. ;
Tsvetkov, Yury E. ;
Nifantiev, Nikolay E. ;
Bakaletz, Lauren O. ;
Pelton, Stephen I. ;
Golenbock, Douglas T. ;
Pier, Gerald B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (24) :E2209-E2218