Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic equations

被引:30
作者
Di Castro, Agnese [1 ]
Montefusco, Eugenio [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Degenerate elliptic equations; Variational methods; REGULARITY; EXISTENCE; DIRICHLET;
D O I
10.1016/j.na.2008.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet problem for a class of anisotropic degenerate elliptic equations. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4093 / 4105
页数:13
相关论文
共 22 条
[1]   PARTIAL REGULARITY UNDER ANISOTROPIC (P, Q) GROWTH-CONDITIONS [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :46-67
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
Ambrosetti A., 2000, Rend. Mat. Appl., V20, P167
[5]  
[Anonymous], CAMBRIDGE STUDIES AD
[6]  
[Anonymous], 1994, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[7]   Quasilinear elliptic problems interacting with its asymptotic spectrum [J].
Arcoya, D ;
Carmona, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (06) :1591-1616
[8]  
BOCCARDO L, 1990, B UNIONE MAT ITAL, V4A, P219
[9]   A DIRICHLET PROBLEM INVOLVING CRITICAL EXPONENTS [J].
BOCCARDO, L ;
ESCOBEDO, M ;
PERAL, I .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (11) :1639-1648
[10]   Local boundedness of minimizers of anisotropic functionals [J].
Cianchi, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02) :147-168