The Pricing of Asian Options in Uncertain Volatility Model

被引:2
作者
Fan, Yulian [1 ]
Zhang, Huadong [1 ]
机构
[1] North China Univ Technol, Sch Sci, Beijing 100144, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
G-BROWNIAN MOTION; STOCHASTIC CALCULUS; CONTINGENT CLAIMS; RISK;
D O I
10.1155/2014/786391
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies the pricing of Asian options when the volatility of the underlying asset is uncertain. We use the nonlinear Feynman-Kac formula in the G-expectation theory to get the two-dimensional nonlinear PDEs. For the arithmetic average fixed strike Asian options, the nonlinear PDEs can be transferred to linear PDEs. For the arithmetic average floating strike Asian options, we use a dimension reduction technique to transfer the two-dimensional nonlinear PDEs to one-dimensional nonlinear PDEs. Then we introduce the applicable numerical computation methods for these two classes of PDEs and analyze the performance of the numerical algorithms.
引用
收藏
页数:16
相关论文
共 46 条
  • [11] A semi-Lagrangian approach for American Asian options under jump diffusion
    D'Halluin, Y
    Forsyth, PA
    Labahn, G
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (01) : 315 - 345
  • [12] Delbaen F., 2002, ADV FINANCE STOCHAST, P1
  • [13] Theoretical framework for the pricing of contingent claims in the presence of model uncertainty
    Denis, Laurent
    Martini, Claude
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (02) : 827 - 852
  • [14] The concept of comonotonicity in actuarial science and finance: theory
    Dhaene, J
    Denuit, A
    Goovaerts, MJ
    Kaas, R
    Vyncke, D
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2002, 31 (01) : 3 - 33
  • [15] Duffy D.J., 2006, WILEY FINANCE SERIES
  • [16] UNCERTAINTY, RISK-NEUTRAL MEASURES AND SECURITY PRICE BOOMS AND CRASHES
    EPSTEIN, LG
    WANG, T
    [J]. JOURNAL OF ECONOMIC THEORY, 1995, 67 (01) : 40 - 82
  • [17] Forsyth PA., 2008, J COMPUT FINANC, V11, P1, DOI DOI 10.21314/JCF.2007.163
  • [18] Fusai G., 2004, Journal of Computational Finance, V7, P87, DOI DOI 10.21314/JCF.2004.122
  • [19] Geman H., 1993, Math. Fin, V3, P349, DOI [DOI 10.1111/J.1467-9965.1993.TB00092.X, 10.1111/j.1467-9965.1993.tb00092.x]
  • [20] Hansen L.P., 2002, WORKING PAPER