Asymptotic properties of supercritical branching processes in random environments

被引:8
|
作者
Li, Yingqiu [1 ]
Liu, Quansheng [1 ,2 ]
Gao, Zhiqiang [3 ]
Wang, Hesong [1 ]
机构
[1] Changsha Univ Sci & Technol, Coll Math & Comp Sci, Changsha 410004, Hunan, Peoples R China
[2] Univ Bretagne Sud, UMR 6205, LMBA, F-56000 Vannes, France
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching process; random environment; large deviation; moderate deviation; central limit theorem; moment; weighted moment; convergence rate; WEIGHTED MOMENTS; LARGE DEVIATIONS; LIMIT-THEOREMS; RATES;
D O I
10.1007/s11464-014-0397-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a supercritical branching process (Z(n)) in an independent and identically distributed random environment xi, and present some recent results on the asymptotic properties of the limit variable W of the natural martingale W-n = Z(n)/E[Z(n)vertical bar xi], the convergence rates of W - W-n (by considering the convergence in law with a suitable norming, the almost sure convergence, the convergence in L-p, and the convergence in probability), and limit theorems (such as central limit theorems, moderate and large deviations principles) on (log Z(n)).
引用
收藏
页码:737 / 751
页数:15
相关论文
共 50 条
  • [11] Branching random walks with random environments in time
    Huang, Chunmao
    Liang, Xingang
    Liu, Quansheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (04) : 835 - 842
  • [12] Branching random walks with random environments in time
    Chunmao Huang
    Xingang Liang
    Quansheng Liu
    Frontiers of Mathematics in China, 2014, 9 : 835 - 842
  • [13] A.s. convergence rate for a supercritical branching processes with immigration in a random environment
    Li, Yingqiu
    Huang, Xulan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (03) : 826 - 839
  • [14] ASYMPTOTIC PROPERTIES OF A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    王月娇
    刘再明
    刘全升
    李应求
    Acta Mathematica Scientia, 2019, 39 (05) : 1345 - 1362
  • [15] ASYMPTOTIC PROPERTIES OF A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
    Wang, Yuejiao
    Liu, Zaiming
    Liu, Quansheng
    Li, Yingqiu
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (05) : 1345 - 1362
  • [16] Branching processes in near-critical random environments
    Jagers, P
    Klebaner, F
    JOURNAL OF APPLIED PROBABILITY, 2004, 41A : 17 - 23
  • [17] Asymptotic Properties of a Branching Random Walk with a Random Environment in Time
    Yuejiao Wang
    Zaiming Liu
    Quansheng Liu
    Yingqiu Li
    Acta Mathematica Scientia, 2019, 39 : 1345 - 1362
  • [18] Asymptotic inference for non-supercritical partially observed branching processes
    Rahimov, I.
    STATISTICS & PROBABILITY LETTERS, 2017, 126 : 26 - 32
  • [19] Comparison results for branching processes in random environments
    Pellerey, Franco
    JOURNAL OF APPLIED PROBABILITY, 2007, 44 (01) : 142 - 150
  • [20] Moments, large and moderate deviations for branching random walks with immigration in random environments
    Wang, Xiaoqiang
    Huang, Chunmao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 523 (01)