Stochastic finite-time stability and stabilisation of semi-Markovian jump linear systems with generally uncertain transition rates

被引:11
作者
Cheng, Guifang [1 ]
Ju, Yuanyuan [1 ]
Mu, Xiaowu [1 ]
机构
[1] Zhengzhou Univ, Coll Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic finite-time stability; semi-Markovian jump; generally uncertain transition rates; H-INFINITY CONTROL; DELAY SYSTEMS; ROBUST;
D O I
10.1080/00207721.2020.1823518
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the stochastic finite-time stability and the state feedback controller design for the linear semi-Markovian jump systems with generally uncertain transition rates. Firstly, sufficient condition is established by using a stochastic Lyapunov functional. Secondly, based on the linear matrix inequality condition, the state feedback controller is obtained to guarantee the finite-time stabilisation. Finally, numerical examples are given to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:185 / 195
页数:11
相关论文
共 52 条
  • [1] Sufficient Conditions for Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems
    Amato, Francesco
    Cosentino, Carlo
    Merola, Alessio
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (02) : 430 - 434
  • [2] Cao YY, 2000, IEEE T AUTOMAT CONTR, V45, P77, DOI 10.1109/9.827358
  • [3] Quantized Nonstationary Filtering of Networked Markov Switching RSNSs: A Multiple Hierarchical Structure Strategy
    Cheng, Jun
    Park, Ju H.
    Zhao, Xudong
    Karimi, Hamid Reza
    Cao, Jinde
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) : 4816 - 4823
  • [4] Mode-independent H∞ filters for Markovian jump linear systems
    de Souza, Carlos E.
    Trofino, Alexandre
    Barbosa, Karina A.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (11) : 1837 - 1841
  • [5] Stability and Stabilization for Markovian Jump Time-Delay Systems With Partially Unknown Transition Rates
    Du, Baozhu
    Lam, James
    Zou, Yun
    Shu, Zhan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (02) : 341 - 351
  • [6] He Youguo, 2010, 2010 2nd International Conference on Education Technology and Computer (ICETC 2010), P228, DOI 10.1109/ICETC.2010.5529398
  • [7] Uniform stability of switched linear systems: Extensions of LaSalle's invariance principle
    Hespanha, JP
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (04) : 470 - 482
  • [8] Stochastic stability of Ito differential equations with semi-Markovian jump parameters
    Hou, Zhenting
    Luo, Jiaowan
    Shi, Peng
    Nguang, Sing Kiong
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (08) : 1383 - 1387
  • [9] Stabilization for switched stochastic systems with semi-Markovian switching signals and actuator saturation
    Hu, Zenghui
    Mu, Xiaowu
    [J]. INFORMATION SCIENCES, 2019, 483 (419-431) : 419 - 431
  • [10] Stochastic stability and robust stabilization of semi-Markov jump linear systems
    Huang, Ji
    Shi, Yang
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2013, 23 (18) : 2028 - 2043