Impact of Weightlessness on Cardiac Shape and Left Ventricular Stress/Strain Distributions

被引:8
作者
Iskovitz, Ilana [1 ]
Kassemi, Mohammad [1 ]
Thomas, James D. [2 ]
机构
[1] NASA, Glenn Res Ctr, NCSER, Cleveland, OH 44135 USA
[2] Cleveland Clin Fdn, Dept Cardiovasc Med, Cleveland, OH 44195 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2013年 / 135卷 / 12期
关键词
MECHANICAL-PROPERTIES; FLUID VOLUME; STRESS; SPACEFLIGHT; MYOCARDIUM; FRAMEWORK; FLIGHT; HEART;
D O I
10.1115/1.4025464
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In this paper, a finite element model of the heart is developed to investigate the impact of different gravitational loadings of Earth, Mars, Moon, and microgravity on the cardiac shape and strain/stress distributions in the left ventricle. The finite element model is based on realistic 3D heart geometry, detailed fiber/sheet micro-architecture, and a validated orthotropic cardiac tissue model and constitutive relationship that capture the passive behavior of the heart at end-diastole. The model predicts the trend and magnitude of cardiac shape change at different gravitational levels with great fidelity in comparison to recent cardiac sphericity measurements performed during simulated reduced-gravity parabolic flight experiments. Moreover, the numerical predictions indicate that although the left ventricular strain distributions remain relatively unaltered across the gravitational fields and the strain extrema values occur at the same relative locations, their values change noticeably with decreasing gravity. As for the stress, however, both the magnitude and location of the extrema change with a decrease in the gravitational field. Consequently, tension regions of the heart on Earth can change into compression regions in space.
引用
收藏
页数:11
相关论文
共 42 条
[1]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[2]  
BLOMQVIST CG, 1983, MED SCI SPORT EXER, V15, P428
[3]   Determinants of left ventricular shear strain [J].
Bovendeerd, Peter H. M. ;
Kroon, Wilco ;
Delhaas, Tammo .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2009, 297 (03) :H1058-H1068
[4]   INFLUENCE OF ENDOCARDIAL-EPICARDIAL CROSSOVER OF MUSCLE-FIBERS ON LEFT-VENTRICULAR WALL MECHANICS [J].
BOVENDEERD, PHM ;
HUYGHE, JM ;
ARTS, T ;
VANCAMPEN, DH ;
RENEMAN, RS .
JOURNAL OF BIOMECHANICS, 1994, 27 (07) :941-951
[5]   DEPENDENCE OF LOCAL LEFT-VENTRICULAR WALL MECHANICS ON MYOCARDIAL FIBER ORIENTATION - A MODEL STUDY [J].
BOVENDEERD, PHM ;
ARTS, T ;
HUYGHE, JM ;
VANCAMPEN, DH ;
RENEMAN, RS .
JOURNAL OF BIOMECHANICS, 1992, 25 (10) :1129-1140
[6]   Orthostatic intolerance after spaceflight [J].
Buckey, JC ;
Lane, LD ;
Levine, BD ;
Watenpaugh, DE ;
Wright, SJ ;
Moore, WE ;
Gaffney, FA ;
Blomqvist, CG .
JOURNAL OF APPLIED PHYSIOLOGY, 1996, 81 (01) :7-18
[7]   A three-dimensional finite element method for large elastic deformations of ventricular myocardium .2. Prolate spheroidal coordinates [J].
Costa, KD ;
Hunter, PJ ;
Wayne, JS ;
Waldman, LK ;
Guccione, JM ;
McCulloch, AD .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1996, 118 (04) :464-472
[8]   PASSIVE BIAXIAL MECHANICAL-PROPERTIES OF ISOLATED CANINE MYOCARDIUM [J].
DEMER, LL ;
YIN, FCP .
JOURNAL OF PHYSIOLOGY-LONDON, 1983, 339 (JUN) :615-630
[9]   Shear properties of passive ventricular myocardium [J].
Dokos, S ;
Smaill, BH ;
Young, AA ;
LeGrice, IJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 283 (06) :H2650-H2659
[10]   THERMODYNAMIC RELATIONS FOR HIGH ELASTIC MATERIALS [J].
FLORY, PJ .
TRANSACTIONS OF THE FARADAY SOCIETY, 1961, 57 (05) :829-&