Extensions of the d'Alembert formulae to the half line and the finite interval obtained via the unified transform

被引:4
|
作者
Fokas, A. S. [1 ,2 ,3 ]
Kalimeris, K. [3 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[2] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA USA
[3] Acad Athens, Math Res Ctr, Athens, Greece
基金
英国工程与自然科学研究理事会;
关键词
wave equation; unified transform; d'Alembert formula; BOUNDARY-VALUE-PROBLEMS; SCHRODINGER-EQUATION; NONLOCAL FORMULATION; EVOLUTION PDES; HEAT-EQUATION; FOKAS METHOD; WATER-WAVES; CONVEX;
D O I
10.1093/imamat/hxac030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the solution of the one-dimensional wave equation for the Dirichlet and Robin initial-boundary value problems (IBVPs) formulated on the half line and the finite interval, with non-homogeneous boundary conditions. Although explicit formulas already exist for these problems, the unified transform method provides a convenient framework for deriving different representations of the solutions for these and other types of IBVPs. Specifically, it provides solution formulas in the Fourier space or solutions which constitute the extension of the classical formula of d'Alembert of the initial value problem on the full line. We also derive the solution of the forced wave equation on the half line.
引用
收藏
页码:1010 / 1042
页数:33
相关论文
共 4 条