SOME EXPANDING SEMI-DIRECT SUMS OF LIE ALGEBRA (G)over-bar AND ITS APPLICATION

被引:1
作者
Chang, Hui [1 ,2 ]
Chang, Shuangling [2 ,3 ]
Zhang, Yu [2 ,3 ]
机构
[1] Qingdao Binhai Univ, Qingdao 266510, Peoples R China
[2] Beijing Wuzi Univ, Beijing 101149, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Qingdao 266510, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2008年 / 22卷 / 32期
关键词
Lattice equation; integrable coupling; Lie algebra;
D O I
10.1142/S0217984908017746
中图分类号
O59 [应用物理学];
学科分类号
摘要
Based on the fundamental special Lie algebra (G) over bar, some semi-direct sums are presented. Than, a new semi-direct sum Lie algebra (G) over bar (1) is constructed. The method presented in this paper can be used to obtain other higher-dimensional Lie algebra. Making use of the above Lie algebra, three integrable couplings of the new Bargmann type lattice hierarchy are obtained.
引用
收藏
页码:3215 / 3225
页数:11
相关论文
共 20 条
[11]   Semidirect sums of Lie algebras and discrete integrable couplings [J].
Ma, Wen-Xiu ;
Xu, Xi-Xiang ;
Zhang, Yufeng .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (05)
[12]   Semi-direct sums of Lie algebras and continuous integrable couplings [J].
Ma, WX ;
Xu, XX ;
Zhang, YF .
PHYSICS LETTERS A, 2006, 351 (03) :125-130
[13]   A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system [J].
Sun, Ye-Peng ;
Chen, Deng-Yuan ;
Xu, Xi-Xiang .
PHYSICS LETTERS A, 2006, 359 (01) :47-51
[14]   A new algebraic system and its applications [J].
Tam, H ;
Zhang, YF .
CHAOS SOLITONS & FRACTALS, 2005, 23 (01) :151-157
[15]   A TRACE IDENTITY AND ITS APPLICATIONS TO THE THEORY OF DISCRETE INTEGRABLE SYSTEMS [J].
TU, GZ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (17) :3903-3922
[16]   A direct method for integrable couplings of TD hierarchy [J].
Zhang, YF ;
Zhang, HQ .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :466-472
[17]   A generalized multi-component Glachette-Johnson (GJ) hierarchy and its integrable coupling system [J].
Zhang, YF .
CHAOS SOLITONS & FRACTALS, 2004, 21 (02) :305-310
[18]  
Zhang YF, 2006, COMMUN THEOR PHYS, V46, P812
[19]   A higher-dimensional Lie algebra and its decomposed subalgebras [J].
Zhang, Yufeng ;
Yan, Wang .
PHYSICS LETTERS A, 2006, 360 (01) :92-98
[20]   Discrete integrable couplings associated with Toda-type lattice and two hierarchies of discrete soliton equations [J].
Zhang, Yufeng ;
Fan, Engui ;
Zhang, Yongqing .
PHYSICS LETTERS A, 2006, 357 (06) :454-461