Operon Prediction Using Chaos Embedded Particle Swarm Optimization

被引:18
作者
Chuang, Li-Yeh [1 ]
Yang, Cheng-Huei [2 ]
Tsai, Jui-Hung [3 ]
Yang, Cheng-Hong [4 ]
机构
[1] I Shou Univ, Inst Biotechnol & Chem Engn, Dept Chem Engn, Kaohsiung 84001, Taiwan
[2] Natl Kaohsiung Inst Marine Technol, Dept Elect Commun Engn, Kaohsiung 81157, Taiwan
[3] Natl Kaohsiung Marine Univ, Dept Elect & Commun Engn, Kaohsiung, Taiwan
[4] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung 807, Taiwan
关键词
Operon; particle swarm optimization; chaos; GUIDED GENETIC ALGORITHM; ESCHERICHIA-COLI; DATABASE; UNITS; MAP;
D O I
10.1109/TCBB.2013.63
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Operons contain valuable information for drug design and determining protein functions. Genes within an operon are co-transcribed to a single-strand mRNA and must be coregulated. The identification of operons is, thus, critical for a detailed understanding of the gene regulations. However, currently used experimental methods for operon detection are generally difficult to implement and time consuming. In this paper, we propose a chaotic binary particle swarm optimization (CBPSO) to predict operons in bacterial genomes. The intergenic distance, participation in the same metabolic pathway and the cluster of orthologous groups (COG) properties of the Escherichia coli genome are used to design a fitness function. Furthermore, the Bacillus subtilis, Pseudomonas aeruginosa PA01, Staphylococcus aureus and Mycobacterium tuberculosis genomes are tested and evaluated for accuracy, sensitivity, and specificity. The computational results indicate that the proposed method works effectively in terms of enhancing the performance of the operon prediction. The proposed method also achieved a good balance between sensitivity and specificity when compared to methods from the literature.
引用
收藏
页码:1299 / 1309
页数:11
相关论文
共 39 条
[1]   A Bayesian network approach to operon prediction [J].
Bockhorst, J ;
Craven, M ;
Page, D ;
Shavlik, J ;
Glasner, J .
BIOINFORMATICS, 2003, 19 (10) :1227-1235
[2]   The relative value of operon predictions [J].
Brouwer, Rutger W. W. ;
Kuipers, Oscar P. ;
van Hijum, Sacha A. F. T. .
BRIEFINGS IN BIOINFORMATICS, 2008, 9 (05) :367-375
[3]   Operon prediction by comparative genomics:: an application to the Synechococcus sp WH8102 genome [J].
Chen, X ;
Su, Z ;
Dam, P ;
Palenik, B ;
Xu, Y ;
Jiang, T .
NUCLEIC ACIDS RESEARCH, 2004, 32 (07) :2147-2157
[4]  
Chen Xin, 2004, Genome Inform, V15, P211
[5]   Binary particle swarm optimization for operon prediction [J].
Chuang, Li-Yeh ;
Tsai, Jui-Hung ;
Yang, Cheng-Hong .
NUCLEIC ACIDS RESEARCH, 2010, 38 (12) :e128
[6]  
Craven M, 2000, Proc Int Conf Intell Syst Mol Biol, V8, P116
[7]   Operon prediction using both genome-specific and general genomic information [J].
Dam, Phuongan ;
Olman, Victor ;
Harris, Kyle ;
Su, Zhengchang ;
Xu, Ying .
NUCLEIC ACIDS RESEARCH, 2007, 35 (01) :288-298
[8]  
De Hoon M J L, 2004, Pac Symp Biocomput, P276
[9]   MicrobesOnline: an integrated portal for comparative and functional genomics [J].
Dehal, Paramvir S. ;
Joachimiak, Marcin P. ;
Price, Morgan N. ;
Bates, John T. ;
Baumohl, Jason K. ;
Chivian, Dylan ;
Friedland, Greg D. ;
Huang, Katherine H. ;
Keller, Keith ;
Novichkov, Pavel S. ;
Dubchak, Inna L. ;
Alm, Eric J. ;
Arkin, Adam P. .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D396-D400
[10]   A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context [J].
Edwards, MT ;
Rison, SCG ;
Stoker, NG ;
Wernisch, L .
NUCLEIC ACIDS RESEARCH, 2005, 33 (10) :3253-3262