Nilpotent deformations of N=2 superspace -: art. no. 012

被引:0
作者
Ivanov, E [1 ]
Zupnik, B
Lechtenfeld, O
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2004年 / 02期
关键词
extended supersymmetry; superspaces; non-commutative geometry;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate deformations of four-dimensional N = (1, 1) euclidean superspace induced by nonanticommuting fermionic coordinates. We essentially use the harmonic superspace approach and consider nilpotent bi-differential Poisson operators only. One variant of such deformations (termed chiral nilpotent) directly generalizes the recently studied chiral deformation of N = (1/2, 1/2) superspace. It preserves chirality and harmonic analyticity but generically breaks N = (1, 1) to N - (1, 0) supersymmetry. Yet, for degenerate choices of the constant deformation matrix N - (1, 1/2) supersymmetry can be retained, i.e. a fraction of 3/4. An alternative version (termed analytic nilpotent) imposes minimal nonanticommutativity on the analytic coordinates of harmonic superspace. It does not affect the analytic subspace and respects all supersymmetries, at the expense of chirality however. For a chiral nilpotent deformation, we present non (anti) commutative euclidean analogs of N = 2 Maxwell and hypermultiplet off-shell actions.
引用
收藏
页数:16
相关论文
共 36 条
[1]   Supersymmetric gauge theories on noncommutative superspace [J].
Araki, T ;
Ito, K ;
Ohtsuka, A .
PHYSICS LETTERS B, 2003, 573 (1-4) :209-216
[2]  
BEREZIN FA, 1965, METHOD 2 QUANTIZATIO
[3]  
BEREZIN FA, 1975, JETP LETT, V21, P678
[4]  
Berkovits N, 2003, J HIGH ENERGY PHYS
[5]   QUANTUM SUPERSPACE [J].
BRINK, L ;
SCHWARZ, JH .
PHYSICS LETTERS B, 1981, 100 (04) :310-312
[6]   N=1/2 Wess-Zumino model is renormalizable -: art. no. 201601 [J].
Britto, R ;
Feng, B .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[7]  
Britto R, 2003, J HIGH ENERGY PHYS
[8]  
Britto R, 2003, J HIGH ENERGY PHYS
[9]  
Buchbinder I. L., 2002, Gravitation & Cosmology, V8, P17
[10]   QUANTIZATION OF SYSTEMS WITH ANTI-COMMUTING VARIABLES [J].
CASALBUONI, R .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 33 (01) :115-125