Solitary waves in a chain of repelling magnets

被引:47
作者
Moleron, Miguel [1 ]
Leonard, Andrea [1 ,2 ]
Daraio, Chiara [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Zurich, Switzerland
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
SOLITONS; LATTICES; ENERGY;
D O I
10.1063/1.4872252
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study experimentally, numerically, and theoretically the dynamics of a one dimensional array of repelling magnets. We demonstrate that such systems support solitary waves with a profile and propagation speed that depend on the amplitude. The system belongs to the kind of nonlinear lattices studied in [Friesecke and Matthies, Physica D 171, 211-220 (2002)] and exhibits a sech(2) profile in the low energy regime and atomic scale localization in the high energy regime. Such systems may find potential applications in the design of novel devices for shock absorption, energy localization and focusing. Furthermore, due to the similarity of the magnetic potential with the potentials governing atomic forces, the system could be used for a better understanding of important problems in physics and chemistry. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 25 条
[11]   Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit [J].
Friesecke, G ;
Pego, RL .
NONLINEARITY, 1999, 12 (06) :1601-1627
[12]   Atomic-scale localization of high-energy solitary waves on lattices [J].
Friesecke, G ;
Matthies, K .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 171 (04) :211-220
[13]   Hysteresis loops and multi-stability: From periodic orbits to chaotic dynamics (and back) in diatomic granular crystals [J].
Hoogeboom, C. ;
Man, Y. ;
Boechler, N. ;
Theocharis, G. ;
Kevrekidis, P. G. ;
Kevrekidis, I. G. ;
Daraio, C. .
EPL, 2013, 101 (04)
[14]   Solitons in nonlinear lattices [J].
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Torner, Lluis .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :247-305
[15]   Non-linear waves in lattices: past, present, future [J].
Kevrekidis, P. G. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2011, 76 (03) :389-423
[16]   Stress Wave Anisotropy in Centered Square Highly Nonlinear Granular Systems [J].
Leonard, A. ;
Daraio, C. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[17]  
Nesterenko V. F, 2001, HIGH PR SH
[18]   Friction Models and Friction Compensation [J].
Olsson, H. ;
Astrom, K. J. ;
de Wit, C. Canudas ;
Gafvert, M. ;
Lischinsky, P. .
EUROPEAN JOURNAL OF CONTROL, 1998, 4 (03) :176-195
[19]   Moving breathers in a chain of magnetic pendulums [J].
Russell, FM ;
Zolotaryuk, Y ;
Eilbeck, JC ;
Dauxois, T .
PHYSICAL REVIEW B, 1997, 55 (10) :6304-6308
[20]   Second-harmonic generation for dispersive elastic waves in a discrete granular chain [J].
Sanchez-Morcillo, V. J. ;
Perez-Arjona, I. ;
Romero-Garcia, V. ;
Tournat, V. ;
Gusev, V. E. .
PHYSICAL REVIEW E, 2013, 88 (04)