ON THE NUMERICAL MODELING OF OPTICAL-SWITCHING IN NON-LINEAR PHASE-SHIFTED GRATING

被引:5
作者
Suryanto, A. [1 ]
机构
[1] Brawijaya Univ, Fac Math & Nat Sci, Dept Math, Jl Veteran Malang 65145, Indonesia
关键词
(Non-linear) phase-shifted sinusoidal grating; direct integration method; coupled-mode theory; optical switching; BRAGG GRATINGS; BISTABILITY; SIMULATION;
D O I
10.1142/S0218863509004488
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the transmission properties of non-linear phase-shifted grating. Using a direct integration method, we show that phase-shift in linear sinusoidal grating introduces a very narrow resonance in the band gap with very high amplification factor. Using frequency in the vicinity of this resonance, we show that the threshold of switching can be reduced significantly. Based on the direct integration method, it is shown that Coupled-Mode Theory may produce inaccurate results for the case of both linear and non-linear grating structure with and without phase-shift.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 27 条
[1]  
Andreev AV, 2001, PHYS REV E, V63, DOI 10.1103/PhysRevE.63.016602
[2]   Simulation of amplifying phase-shifted fiber Bragg gratings by the method of single expression [J].
Baghdasaryan, HV ;
Knyazyan, TM .
OPTICAL AND QUANTUM ELECTRONICS, 2003, 35 (04) :493-506
[3]   Problem of plane EM wave self-action in multilayer structure: an exact solution [J].
Baghdasaryan, HV ;
Knyazyan, TM .
OPTICAL AND QUANTUM ELECTRONICS, 1999, 31 (9-10) :1059-1072
[4]   Modelling of strongly nonlinear sinusoidal Bragg gratings by the Method of Single Expression [J].
Baghdasaryan, HV ;
Knyazyan, TM .
OPTICAL AND QUANTUM ELECTRONICS, 2000, 32 (6-8) :869-883
[5]   Optical bistability switching property in one-dimensional nonlinear photonic crystal [J].
Chen, M ;
Li, CF ;
Ma, SJ ;
Xu, M ;
Wang, WB ;
Xia, YX .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2005, 14 (01) :41-48
[6]   DISPERSIVE OPTICAL BISTABILITY IN STRATIFIED STRUCTURES [J].
DANCKAERT, J ;
FOBELETS, K ;
VERETENNICOFF, I ;
VITRANT, G ;
REINISCH, R .
PHYSICAL REVIEW B, 1991, 44 (15) :8214-8225
[7]   NONLINEAR COUPLED-MODE EQUATIONS ON A FINITE INTERVAL - A NUMERICAL PROCEDURE [J].
DESTERKE, CM ;
JACKSON, KR ;
ROBERT, BD .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (02) :403-412
[8]   LAUNCHING OF GAP SOLITONS IN NONUNIFORM GRATINGS [J].
DESTERKE, CM ;
SIPE, JE .
OPTICS LETTERS, 1993, 18 (04) :269-271
[9]   Analysis of bistable steady characteristics and dynamic stability of linearly tapered nonlinear Bragg gratings [J].
Jia, XH ;
Wu, ZM ;
Xia, GQ .
OPTICS EXPRESS, 2004, 12 (13) :2945-2953
[10]  
Joannopoulos J. D., 1995, PHOTONIC CRYSTALS