Statistical mechanics of the cosmological many-body problem

被引:71
|
作者
Ahmad, F [1 ]
Saslaw, WC
Bhat, NI
机构
[1] Univ Kashmir, Dept Phys, Srinagar 1900006, Jammu & Kashmir, India
[2] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
[3] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA
[4] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[5] Natl Radio Astron Observ, Charlottesville, VA 22903 USA
来源
ASTROPHYSICAL JOURNAL | 2002年 / 571卷 / 02期
关键词
cosmology : theory; galaxies : clusters : general; gravitation; large-scale structure of universe; methods : analytical;
D O I
10.1086/340095
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive analytical expressions for the grand canonical partition functions of point masses, and of extended masses (e. g., galaxies with halos), which cluster gravitationally in an expanding universe. From the partition functions, we obtain the system's thermodynamic properties, distribution functions ( including voids and counts in cells), and moments of distributions such as their skewness and kurtosis. This also provides an analytical calculation of the evolution of the distribution. Our results apply to both linear and nonlinear regimes of clustering. In the limit of point masses, these results reduce exactly to previous results derived from thermodynamics, thus providing a new, more fundamental foundation for the earlier results.
引用
收藏
页码:576 / 584
页数:9
相关论文
共 50 条
  • [41] GRAVITATIONAL PHASE TRANSITIONS IN THE COSMOLOGICAL MANY-BODY SYSTEM
    Saslaw, William C.
    Ahmad, Farooq
    ASTROPHYSICAL JOURNAL, 2010, 720 (02): : 1246 - 1253
  • [42] Some Details of Statistical Mechanics of Many-Body Systems in the Presence of a Measurable Minimal Length
    Alizadeh, A.
    Nozari, K.
    ACTA PHYSICA POLONICA A, 2017, 132 (04) : 1329 - 1332
  • [43] A Solvable Many-Body Problem in the Plane
    F. Calogero
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 289 - 293
  • [44] Hill stability in the many-body problem
    L. G. Luk’yanov
    L. P. Nasonova
    G. I. Shirmin
    Astronomy Letters, 2003, 29 : 274 - 277
  • [45] DENSITY MATRICES IN MANY-BODY PROBLEM
    GLUCK, P
    PHYSICAL REVIEW, 1968, 176 (05): : 1534 - &
  • [46] Proteins: A challenging many-body problem
    Frauenfelder, H
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1996, 74 (05): : 579 - 585
  • [47] The electron many-body problem in graphene
    Uchoa, Bruno
    Reed, James P.
    Gan, Yu
    Joe, Young Il
    Fradkin, Eduardo
    Abbamonte, Peter
    Casa, Diego
    PHYSICA SCRIPTA, 2012, T146
  • [48] VARIATIONAL APPROACH TO THE MANY-BODY PROBLEM
    AYRES, RU
    PHYSICAL REVIEW, 1958, 111 (06): : 1453 - 1460
  • [49] THE MANY-BODY PROBLEM AND THE BRUECKNER APPROXIMATION
    RODBERG, LS
    ANNALS OF PHYSICS, 1957, 2 (03) : 199 - 225
  • [50] THE RELATIVISTIC ATOMIC MANY-BODY PROBLEM
    BROWN, GE
    PHYSICA SCRIPTA, 1987, 36 (01): : 71 - 76