Residual Minimization for Isogeometric Analysis in Reduced and Mixed Forms

被引:1
作者
Calo, Victor M. [1 ,2 ]
Deng, Quanling [1 ]
Rojas, Sergio [1 ]
Romkes, Albert [3 ]
机构
[1] Curtin Univ, Dept Appl Geol, Perth, WA 6102, Australia
[2] Commonwealth Sci & Ind Res Org CSIRO, Mineral Resources, Perth, WA 6152, Australia
[3] South Dakota Schoolol Mines & Technol, Dept Mech Engn, 501 E St Joseph St, Rapid City, SD 57701 USA
来源
COMPUTATIONAL SCIENCE - ICCS 2019, PT II | 2019年 / 11537卷
基金
欧盟地平线“2020”;
关键词
Isogeometric analysis; Finite elements; Discontinuous Petrov-Galerkin; Mixed formulation; PETROV-GALERKIN METHODS; TRANSPORT PROBLEMS; QUADRATURE-RULES; FINITE-ELEMENTS; NURBS; COST; PERFORMANCE; CONTINUITY;
D O I
10.1007/978-3-030-22741-8_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most variational forms of isogeometric analysis use highly- continuous basis functions for both trial and test spaces. Isogeometric analysis results in excellent discrete approximations for differential equations with regular solutions. However, we observe that high continuity for test spaces is not necessary. In this work, we present a framework which uses highly-continuous B-splines for the trial spaces and basis functions with minimal regularity and possibly lower order polynomials for the test spaces. To realize this goal, we adopt the residual minimization methodology. We pose the problem in a mixed formulation, which results in a system governing both the solution and a Riesz representation of the residual. We present various variational formulations which are variationally-stable and verify their equivalence numerically via numerical tests.
引用
收藏
页码:463 / 476
页数:14
相关论文
共 38 条
[1]  
[Anonymous], 2009, Isogeometric analysis
[2]  
[Anonymous], 1978, PRACTICAL GUIDE SPLI
[3]   ISOGEOMETRIC COLLOCATION METHODS [J].
Auricchio, F. ;
Da Veiga, L. Beirao ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11) :2075-2107
[4]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[5]  
Buffa A., 2010, INT J NUMER METHODS
[6]   1ST-ORDER SYSTEM LEAST-SQUARES FOR 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS .1. [J].
CAI, Z ;
LAZAROV, R ;
MANTEUFFEL, TA ;
MCCORMICK, SF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (06) :1785-1799
[7]  
Calo V. M., 2017, ARXIV170204540
[8]  
Calo V.M., 2018, ARXIV180801888
[9]   Analysis of the discontinuous Petrov-Galerkin method with optimal test functions for the Reissner-Mindlin plate bending model [J].
Calo, Victor M. ;
Collier, Nathaniel O. ;
Niemi, Antti H. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 66 (12) :2570-2586
[10]   ADAPTIVITY AND VARIATIONAL STABILIZATION FOR CONVECTION-DIFFUSION EQUATIONS [J].
Cohen, Albert ;
Dahmen, Wolfgang ;
Welper, Gerrit .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (05) :1247-1273