Incremental Stream Clustering for Anomaly Detection and Classification

被引:4
作者
Holst, Anders [1 ]
Ekman, Jan [1 ]
机构
[1] Swedish Inst Comp Sci, SE-16429 Kista, Sweden
来源
ELEVENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2011) | 2011年 / 227卷
关键词
Anomaly Detection; Clustering; Classification; Bayesian Statistics; Semi-supervised Learning;
D O I
10.3233/978-1-60750-754-3-100
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have designed a framework for Bayesian Statistical Anomaly Detection, called ISC, or Incremental Stream Clustering. It learns the normal situation incrementally, and can on the fly detect anomalous cases. When this happens, a new cluster can be created, so similar cases can be detected in the future. In this way, the framework performs incremental clustering, while at the same time either classifying a new case as belonging to one of the known clusters or indicating that it is from a previously unseen situation.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 7 条
[1]  
Bjurling B., 2010, P TAMSEC 2010 1 NAT
[2]  
Carpenter G. A., 2003, HDB BRAIN THEORY NEU, P87, DOI DOI 10.1016/J.NEUNET.2012.09.017]
[3]   APPROXIMATING DISCRETE PROBABILITY DISTRIBUTIONS WITH DEPENDENCE TREES [J].
CHOW, CK ;
LIU, CN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (03) :462-+
[4]  
Dey C., 2009, THESIS ROYAL I TECHN
[5]  
Ekman J., 2008, T200801 SICS
[6]  
Holst A., 2006, The Institution of Engineering and Technology International Conference on Railway Condition Monitoring, P53, DOI 10.1049/ic:20060043
[7]   Anomaly Detection: A Survey [J].
Chandola, Varun ;
Banerjee, Arindam ;
Kumar, Vipin .
ACM COMPUTING SURVEYS, 2009, 41 (03)