Activation of peroxymonosulfate on visible light irradiated TiO2 via a charge transfer complex path

被引:98
作者
Jo, Yoosang [1 ,2 ]
Kim, Chuhyung [1 ,2 ]
Moon, Gun-Hee [1 ,2 ]
Lee, Jaesang [3 ]
An, Taicheng [4 ]
Choi, Wonyong [1 ,2 ,4 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Div Environm Sci & Engn, Pohang 37673, South Korea
[3] Korea Univ, Civil Environm & Architectural Engn, Seoul 136701, South Korea
[4] Guangdong Univ Technol, Sch Environm Sci & Engn, Inst Environm Hlth & Pollut Control, Guangzhou Key Lab Environm Catalysis & Pollut Con, Guangzhou 510006, Guangdong, Peoples R China
基金
新加坡国家研究基金会;
关键词
Peroxymonosulfate activation; Visible light; Surface complex; Ligand-to-metal charge transfer (LMCT); Sulfate radical; Advanced oxidation process (AOP); ANTIEPILEPTIC DRUG CARBAMAZEPINE; AQUEOUS-SOLUTION; RATE CONSTANTS; PHOTOCATALYTIC DEGRADATION; ELECTROCHEMICAL ACTIVATION; MEDIATED PHOTOCATALYSIS; ORGANIC CONTAMINANTS; PHENOLIC-COMPOUNDS; HYDROXYL RADICALS; HYDROGEN-PEROXIDE;
D O I
10.1016/j.cej.2018.03.150
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Photo-induced activation of peroxymonosulfate (PMS) has been enabled by either the direct photolysis of the peroxide bond or the semiconductor bandgap-excited photocatalysis. Whereas the existing approaches utilize UV light, this study first studied the utilization of visible light for the PMS activation in which the dual roles of PMS as a complexing ligand on TiO2 and a precursor of sulfate radical (SO4 center dot-) are enabled via ligand-to-metal charge transfer (LMCT) mechanism. In this LMCT-mediated photocatalysis, PMS coordinated to TiO2 as a surface complex is photoexcited by visible light to inject electrons to the CB of TiO2, which subsequently activate PMS to yield SO4 center dot-. Despite the lack of visible light activity of both TiO2 and PMS, the addition of PMS induced a significant degradation of 4-chlorophenol and dichloroacetate on TiO2 under visible light irradiation. Together with several spectroscopic analyses, the result revealed the formation of an interfacial charge transfer (CT) complex of PMS on TiO2 and the LMCT-mediated PMS conversion into SO4 center dot-. Multi-activity assessment showed that the oxidizing capacity of TiO2/PMS varied depending on the substrate type; benzoic acid and acetaminophen were rapidly decomposed whereas nitrophenol oxidation was insignificant. The role of SO4 center dot- as the main oxidant was identified based on (1) quenching effect of methanol as a radical quencher, (2) coumarin hydroxylation as an indication of SO4 center dot- formation, and (3) EPR spin-trapping technique. The comparison of TiO2/PMS versus Co3O4/PMS suggested that the repeated acetaminophen decay was achievable with TiO2/PMS without the loss of activating capacity whereas a gradual reduction in degradation efficiency was observed with Co3O4/PMS.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 45 条
[1]   Transition metal/UV-based advanced oxidation technologies for water decontamination [J].
Anipsitakis, GP ;
Dionysiou, DD .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 54 (03) :155-163
[2]   Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J].
Anipsitakis, GP ;
Dionysiou, DD .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (20) :4790-4797
[3]   Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions [J].
Anipsitakis, GP ;
Dionysiou, DD ;
Gonzalez, MA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (03) :1000-1007
[4]   Radical generation by the interaction of transition metals with common oxidants [J].
Anipsitakis, GP ;
Dionysiou, DD .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (13) :3705-3712
[5]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[6]   Mineralization of aniline in aqueous solution by electrochemical activation of persulfate [J].
Chen, Wen-Shing ;
Huang, Chi-Pin .
CHEMOSPHERE, 2015, 125 :175-181
[7]   Removal of dinitrotoluenes in wastewater by sono-activated persulfate [J].
Chen, Wen-Shing ;
Su, Yi-Chang .
ULTRASONICS SONOCHEMISTRY, 2012, 19 (04) :921-927
[8]   Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate [J].
Chen, Xiaoyang ;
Wang, Weiping ;
Xiao, Hua ;
Hong, Chunlai ;
Zhu, Fengxiang ;
Yao, Yanlai ;
Xue, Zhiyong .
CHEMICAL ENGINEERING JOURNAL, 2012, 193 :290-295
[9]   Microwave-enhanced persulfate oxidation to treat mature landfill leachate [J].
Chou, Yu-Chieh ;
Lo, Shang-Lien ;
Kuo, Jeff ;
Yeh, Chih-Jung .
JOURNAL OF HAZARDOUS MATERIALS, 2015, 284 :83-91
[10]   Phosphate adsorption onto TiO2 from aqueous solutions:: An in situ internal reflection infrared spectroscopic study [J].
Connor, PA ;
McQuillan, AJ .
LANGMUIR, 1999, 15 (08) :2916-2921