Robust data encodings for quantum classifiers

被引:172
作者
LaRose, Ryan [1 ]
Coyle, Brian [2 ]
机构
[1] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48823 USA
[2] Univ Edinburgh, Sch Informat, 10 Crichton St, Edinburgh, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
DECOHERENCE-FREE SUBSPACES;
D O I
10.1103/PhysRevA.102.032420
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Data representation is crucial for the success of machine-learning models. In the context of quantum machine learning with near-term quantum computers, equally important considerations of how to efficiently input (encode) data and effectively deal with noise arise. In this paper, we study data encodings for binary quantum classification and investigate their properties both with and without noise. For the common classifier we consider, we show that encodings determine the classes of learnable decision boundaries as well as the set of points which retain the same classification in the presence of noise. After defining the notion of a robust data encoding, we prove several results on robustness for different channels, discuss the existence of robust encodings, and prove a lower bound on the number of robust points in terms of fidelities between noisy and noiseless states. Numerical results for several example implementations are provided to reinforce our findings.
引用
收藏
页数:24
相关论文
共 87 条
  • [31] Differences in signal contrast and camouflage among different colour variations of a stomatopod crustacean, Neogonodactylus oerstedii
    Franklin, Amanda M.
    Marshall, Justin
    Feinstein, Adina D.
    Bok, Michael J.
    Byrd, Anya D.
    Lewis, Sara M.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [32] Cryptographic distinguishability measures for quantum-mechanical states
    Fuchs, CA
    van de Graaf, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) : 1216 - 1227
  • [33] Gentini L., ARXIV191206744
  • [34] Gidney C., ARXIV190509749
  • [35] Giurgica-Tiron T., ARXIV200510921
  • [36] Goodfellow I., 2016, DEEP LEARNING
  • [37] AN INITIALIZATION STRATEGY FOR ADDRESSING BARREN PLATEAUS IN PARAMETRIZED QUANTUM CIRCUITS
    Grant, Edward
    Wossnig, Leonard
    Ostaszewski, Mateusz
    Benedetti, Marcello
    [J]. QUANTUM, 2019, 3
  • [38] Hierarchical quantum classifiers
    Grant, Edward
    Benedetti, Marcello
    Cao, Shuxiang
    Hallam, Andrew
    Lockhart, Joshua
    Stojevic, Vid
    Green, Andrew G.
    Severini, Simone
    [J]. NPJ QUANTUM INFORMATION, 2018, 4
  • [39] Guo G.-P, 2019, ARXIV, DOI [10.1088/0256-307X/38/3/030302, DOI 10.1088/0256-307X/38/3/030302]
  • [40] Quantum Algorithm for Linear Systems of Equations
    Harrow, Aram W.
    Hassidim, Avinatan
    Lloyd, Seth
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (15)