Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis

被引:39
|
作者
Liu, Jian [1 ]
Chuah, Yon Jin [1 ]
Fu, Jiayin [1 ]
Zhu, Wenzhen [1 ]
Wang, Dong-An [2 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
[2] City Univ Hong Kong, Dept Biomed Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2019年 / 102卷
关键词
Vascularization; Coculture; Human bone marrow stromal cells; Gelatin methacrylate microcavity hydrogel; MESENCHYMAL STEM-CELLS; IN-VIVO; NETWORK FORMATION; BLOOD-VESSELS; PROGENITOR; PROLIFERATION; REGENERATION; INSIGHTS; VASCULARIZATION; EXPRESSION;
D O I
10.1016/j.msec.2019.04.089
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Vascular tissue engineering seeks to develop functional blood vessels that comprise of both endothelial cells and pericytes for translational medicine and is often faced with numerous challenges such as nutrients and wastes diffusion problem in the centre of the scaffolds. Various strategies have been adopted to solve the diffusion problem in thick engineered scaffolds. Typically, microchannels or dissolvable microspheres are introduced into three-dimensional (3D) scaffolds as an alternative way to improve the infiltration of scaffolds and endothelial cells are usually incorporated into the biomaterials. While some research groups now focus on finding supporting cells to build further vascularized structures in the scaffolds. In this study, a bioinspired 3D gelatin-methacrylate (Gel-MA) hydrogel with dissolvable microspheres was created to encapsulate human bone marrow stromal cells (HMSCs) and human umbilical vein endothelial cells (HUVECs) which was used to investigate whether HMSCs could play a pericytes-like role and enhance vascularization within the engineered scaffolds. The results showed co-culture of HMSCs and HUVECs demonstrated significantly improved vascularization when compared to either HUVECs or HMSCs monoculture. Angiogenic genes were expressed significantly higher in co-culture group. Moreover, when implanting the pre-vascularized scaffolds in vivo, co-culture system integrated more successfully with host tissue and showed higher host tissue invasion than any other groups. More importantly, both the qPCR and immunofluorescence results indicated MSCs differentiated towards pericytes to enhance vascularization in this study. This paper highlights the enhanced capability of 3D micro-cavitary Gel-MA hydrogel for co-culturing HUVECs and HMSCs to promote vascularization which presents a potential strategy for future tissue repair and regeneration.
引用
收藏
页码:906 / 916
页数:11
相关论文
共 50 条
  • [1] RETRACTED: Effect of the co-culture of human bone marrow mesenchymal stromal cells with human umbilical vein endothelial cells in vitro (Retracted Article)
    Lin, Qiwang
    Wang, Linhui
    Bai, Yuling
    Hu, Menglin
    Mo, Jianling
    He, Haixin
    Lou, Aiju
    Yang, Bo
    Zhao, Hongpu
    Guo, Yuan
    Wu, Yanfeng
    Wang, Le
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2016, 36 (03) : 221 - 224
  • [2] Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells
    Pekozer, Gorke Gurel
    Kose, Gamze Torun
    Hasirci, Vasif
    MICROVASCULAR RESEARCH, 2016, 108 : 1 - 9
  • [3] Co-culture of human bone marrow stromal cells with endothelial cells alters gene expression profiles
    Xue, Ying
    Xing, Zhe
    Bolstad, Anne Isine
    Van Dyke, Thomas E.
    Mustafa, Kamal
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2013, 36 (09) : 650 - 662
  • [4] Human Umbilical Vein Endothelial Cells (HUVECs) Co-Culture with Osteogenic Cells: From Molecular Communication to Engineering Prevascularised Bone Grafts
    Kocherova, Ievgeniia
    Bryja, Artur
    Mozdziak, Paul
    Volponi, Ana Angelova
    Dyszkiewicz-Konwinska, Marta
    Piotrowska-Kempisty, Hanna
    Antosik, Pawel
    Bukowska, Dorota
    Bruska, Malgorzata
    Izycki, Dariusz
    Zabel, Maciej
    Nowicki, Michal
    Kempisty, Bartosz
    JOURNAL OF CLINICAL MEDICINE, 2019, 8 (10)
  • [5] Effect of FGF-2 and PDGF-BB on a Co-Culture of Human Gingival Fibroblasts and Umbilical Vein Endothelial Cells
    Allah, Nasar Um Min
    Berahim, Zurairah
    Ahmad, Azlina
    Ponnuraj, Kannan Thirumulu
    SAINS MALAYSIANA, 2020, 49 (08): : 1865 - 1874
  • [6] In vitro angiogenesis by human umbilical vein endothelial cells (HUVEC) induced by three-dimensional co-culture with glioblastoma cells
    Chen, Zhijian
    Htay, Andre
    Dos Santos, Wagner
    Gillies, George T.
    Fillmore, Helen L.
    Sholley, Milton M.
    Broaddus, William C.
    JOURNAL OF NEURO-ONCOLOGY, 2009, 92 (02) : 121 - 128
  • [7] Biological Interaction Between Human Gingival Fibroblasts and Vascular Endothelial Cells for Angiogenesis: A Co-culture Perspective
    Allah, Nasar Um Min
    Berahim, Zurairah
    Ahmad, Azlina
    Kannan, Thirumulu Ponnuraj
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2017, 14 (05) : 495 - 505
  • [8] DEVELOPMENT OF AN OSTEOBLAST/OSTEOCLAST CO-CULTURE DERIVED BY HUMAN BONE MARROW STROMAL CELLS AND HUMAN MONOCYTES FOR BIOMATERIALS TESTING
    Heinemann, C.
    Heinemann, S.
    Worch, H.
    Hanke, T.
    EUROPEAN CELLS & MATERIALS, 2011, 21 : 80 - 93
  • [9] Co-culture of outgrowth endothelial cells with human mesenchymal stem cells in silk fibroin hydrogels promotes angiogenesis
    Sun, Wei
    Motta, Antonella
    Shi, Yang
    Seekamp, Andreas
    Schmidt, Harald
    Gorb, Stanislav N.
    Migliaresi, Claudio
    Fuchs, Sabine
    BIOMEDICAL MATERIALS, 2016, 11 (03)
  • [10] Role of neural-cadherin in early osteoblastic differentiation of human bone marrow stromal cells cocultured with human umbilical vein endothelial cells
    Li, Haiyan
    Daculsi, Richard
    Grellier, Maritie
    Bareille, Reine
    Bourget, Chantal
    Amedee, Joelle
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2010, 299 (02): : C422 - C430