Pedestrian Detection using Fuzzy Clustering and Histogram of Oriented Gradients

被引:1
作者
Malireddi, Harshitha [1 ]
Rajitha, B. [1 ]
Parwani, Kiran [1 ]
机构
[1] Natl Inst Technol, Comp Sci & Engn, Allahabad, Uttar Pradesh, India
来源
2019 5TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2019) | 2019年
关键词
Histogram of Gradients; Background; Fuzzy clustering; Contour Detection; Cluster centres;
D O I
10.1109/wiecon-ece48653.2019.9019930
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Pedestrian detection with complex scenes from a video is an challenging task due to illumination variations and dynamic background changes. In this context, this paper proposes a efficient approach of using fuzzy clustering and Histogram of Gradients for detecting humans. For this task, the paper first initializes a background frame where only static objects are present using fuzzy c-means clustering. Then a background subtraction and foreground detection algorithm (binary threshold) is proposed for detecting the moving objects. A contour is fetched for these foreground objects and passed through HOG classifier for pedestrian detection. The proposed method has been tested on various complex scenes from different data-sets.And it has presented better results over literature methods in terms of classification accuracy of 92%.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Multiresolution Community Detection Based on Fuzzy Clustering [J].
Wang X. ;
Liu G. ;
Li J. .
Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2017, 39 (09) :2033-2039
[32]   Fuzzy clustering of categorical data using fuzzy centroids [J].
Kim, DW ;
Lee, KH ;
Lee, D .
PATTERN RECOGNITION LETTERS, 2004, 25 (11) :1263-1271
[33]   Using Fuzzy clustering with bioinformatics data [J].
Gasparovica, Madara ;
Aleksejeva, Ludmila ;
Nazaruks, Vladislavs .
AICT 2013: APPLIED INFORMATION AND COMMUNICATION TECHNOLOGIES, 2013, :62-70
[34]   User profiling using fuzzy clustering [J].
Castellano, Giovanna ;
Mesto, Fabrizio ;
Minunno, Michele ;
Torsello, Maria Alessandra .
APPLICATIONS OF FUZZY SETS THEORY, 2007, 4578 :94-+
[35]   Fuzzy clustering using scatter matrices [J].
Rousseeuw, PJ ;
Kaufman, L ;
Trauwaert, E .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 23 (01) :135-151
[36]   Automatic detection of hypertensive retinopathy using improved fuzzy clustering and novel loss function [J].
Bhimavarapu, Usharani .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) :30107-30123
[37]   Credit Card Fraud Detection: A Hybrid Approach Using Fuzzy Clustering & Neural Network [J].
Behera, Tanmay Kumar ;
Panigrahi, Suvasini .
2015 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND COMMUNICATION ENGINEERING ICACCE 2015, 2015, :494-499
[38]   Automatic detection of hypertensive retinopathy using improved fuzzy clustering and novel loss function [J].
Usharani Bhimavarapu .
Multimedia Tools and Applications, 2023, 82 :30107-30123
[39]   Interpretable fuzzy clustering using unsupervised fuzzy decision trees [J].
Jiao, Lianmeng ;
Yang, Haoyu ;
Liu, Zhun-ga ;
Pan, Quan .
INFORMATION SCIENCES, 2022, 611 :540-563
[40]   Application of a New Fuzzy Clustering Algorithm in Intrusion Detection [J].
WU Tiefeng Jiamusi UniversityJiamusiChinaXidian UniversityXianChina .
现代电子技术, 2008, (04) :100-102