Riemann-Hilbert approach for the Camassa-Holm equation on the line

被引:72
作者
de Monvel, Anne Boutet
Shepelsky, Dmitry
机构
[1] Univ Paris 07, Inst Math Jussieu, F-75251 Paris 05, France
[2] Inst Low Temp Phys, UA-61103 Kharkov, Ukraine
关键词
D O I
10.1016/j.crma.2006.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a Riemann-Hilbert problem formalism for the initial value problem for the Camassa-Holm equation u(t) - u(txx) + 2 omega u(x) + 3uu(x) = 2u(x)u(xx) + uu(xxx) on the line (CH). We show that: (i) for all omega > 0, the solution of this problem can be obtained in a parametric form via the solution of some associated Riemann-Hilbert problem; (ii) for large time, it develops into a train of smooth solitons; (iii) for small omega, this soliton train is close to a train of peakons, which are piecewise smooth solutions of the CH equation for omega = 0.
引用
收藏
页码:627 / 632
页数:6
相关论文
共 12 条
  • [1] Multi-peakons and a theorem of Stieltjes
    Beals, R
    Sattinger, DH
    Szmigielski, J
    [J]. INVERSE PROBLEMS, 1999, 15 (01) : L1 - L4
  • [2] Beals R., 1988, Direct and Inverse Scattering on the Line, Mathematical Surveys and Monographs, VVolume 28
  • [3] AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS
    CAMASSA, R
    HOLM, DD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1661 - 1664
  • [4] Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
  • [5] Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
  • [6] 2-D
  • [7] On the scattering problem for the Camassa-Holm equation
    Constantin, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008): : 953 - 970
  • [8] Inverse scattering transform for the Camassa-Holm equation
    Constantin, Adrian
    Gerdjikov, Vladimir S.
    Ivanov, Rossen I.
    [J]. INVERSE PROBLEMS, 2006, 22 (06) : 2197 - 2207
  • [9] A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION
    DEIFT, P
    ZHOU, X
    [J]. ANNALS OF MATHEMATICS, 1993, 137 (02) : 295 - 368
  • [10] Parametric representation for the multisoliton solution of the Camassa-Holm equation
    Matsuno, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (07) : 1983 - 1987