A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation

被引:10
|
作者
Hu, Xiaohui [1 ]
Huang, Pengzhan [1 ]
Feng, Xinlong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
Burgers' equation; mixed finite element method; stable conforming finite element; Crank-Nicolson scheme; inf-sup condition;
D O I
10.1007/s10492-016-0120-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new mixed finite element method is used to approximate the solution as well as the flux of the 2D Burgers' equation. Based on this new formulation, we give the corresponding stable conforming finite element approximation for the P (0) (2) - P (1) pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are obtained. Finally, numerical experiments show the efficiency of the new mixed method and justify the theoretical results.
引用
收藏
页码:27 / 45
页数:19
相关论文
共 50 条
  • [1] A new mixed finite element method based on the Crank-Nicolson scheme for Burgers’ equation
    Xiaohui Hu
    Pengzhan Huang
    Xinlong Feng
    Applications of Mathematics, 2016, 61 : 27 - 45
  • [2] A numerical method based on Crank-Nicolson scheme for Burgers' equation
    Kadalbajoo, Mohan. K.
    Awasthi, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1430 - 1442
  • [3] A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems
    Weng, Zhifeng
    Feng, Xinlong
    Huang, Pengzhan
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 5068 - 5079
  • [4] Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation
    Hu, Bing
    Xu, Youcai
    Hu, Jinsong
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 311 - 316
  • [5] Invariantization of the Crank-Nicolson method for Burgers' equation
    Kim, Pilwon
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 243 - 254
  • [6] A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation
    Wang, Jinfeng
    Li, Hong
    He, Siriguleng
    Gao, Wei
    Liu, Yang
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [7] A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation
    Zeng, Fanhai
    Li, Changpin
    APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 82 - 95
  • [8] A reduced-dimension method of Crank-Nicolson finite element solution coefficient vectors for the unsteady Burgers equation
    Huang, Chunxia
    Li, Hong
    Yin, Baoli
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [9] Stabilized multiphysics finite element method with Crank-Nicolson scheme for a poroelasticity model
    Ge, Zhihao
    He, Yanan
    Li, Tingting
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1412 - 1428
  • [10] A Crank-Nicolson Approximation for the time Fractional Burgers Equation
    Onal, M.
    Esen, A.
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (02) : 177 - 184