The aim of this study is to understand the effect of Na and Cu incorporation in In2S3, which is representing a Cd-free buffer system for chalcopyrite-type thin film solar cells based on Cu(In,Ga)Se-2 (CIGS). The formation energies and charge states of sodium and copper dopants in In2S3 are investigated by means of calculations based on electronic hybrid density functional theory using supercells of 320-atoms. Our results reveal a negative formation enthalpy of sodium in both In-rich and S-rich samples, which indicates the occurrence of side reactions and explains the existence of a chemically modified buffer layer in the presence of a Na-reservoir. Copper, in contrast, can be incorporated in large concentrations in In-rich In2S3 under n-type conditions, acting as an acceptor and thus limiting the n-type conductivity. For lower Fermi energies, however, reactions between Cu and the buffer material lead to the formation of Cu-containing secondary phases in the buffer side which is in qualitative agreement with experimental observations of Bar et al. [Bar et al., Appl. Mater. Interfaces, 2016, 8, 2120]. Sulfur rich samples are found to be more heavily doped under n-type conditions and we expect to have Na- and Cu-containing secondary phases formed under metal-poor growth conditions.