Improved Brain-Computer Interface Signal Recognition Algorithm Based on Few-Channel Motor Imagery

被引:3
|
作者
Wang, Fan [1 ,2 ]
Liu, Huadong [1 ,2 ]
Zhao, Lei [3 ]
Su, Lei [1 ,2 ]
Zhou, Jianhua [1 ,2 ]
Gong, Anmin [4 ]
Fu, Yunfa [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Peoples R China
[2] Kunming Univ Sci & Technol, Brain Cognit & Brain Comp Intelligence Integrat G, Kunming, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Sci, Kunming, Peoples R China
[4] Chinese Peoples Armed Police Force Engn Univ, Sch Informat Engn, Xian, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
MI-BCI with fewer channels; Dempster-Shafer evidence theory; time-frequency decomposition (TFD); phase space reconstruction (PSR); common spatial pattern (CSP); EEG; DECOMPOSITION; SELECTION;
D O I
10.3389/fnhum.2022.880304
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Common spatial pattern (CSP) is an effective algorithm for extracting electroencephalogram (EEG) features of motor imagery (MI); however, CSP mainly aims at multichannel EEG signals, and its effect in extracting EEG features with fewer channels is poor-even worse than before using CSP. To solve the above problem, a new combined feature extraction method has been proposed in this study. For EEG signals from fewer channels (three channels), wavelet packet transform, fast ensemble empirical mode decomposition, and local mean decomposition were used to decompose the band-pass filtered EEG into multiple time-frequency components, and the corresponding components were selected according to the frequency characteristics of MI or the correlation coefficient between its time-frequency components and the original EEG signal. Furthermore, phase space reconstruction (PSR) was performed on the selected components after the three time-frequency decompositions, the maximum Lyapunov index was calculated, and the features were reconstructed; then, CSP projection mapping was used for the reconstructed features. The support vector machine probability output model was trained by the obtained three mappings. Probability outputs by three different support vector machines were then obtained. Finally, the classification of test samples was determined by the fusion of the Dempster-Shafer evidence theory at the decision level. The results showed that the accuracy of the proposed method was 95.71% on data set III of BCI competition II (left- and right-hand MI), which was 2.88% higher than the existing methods. On data set IIb of BCI competition IV, the average accuracy was 86.60%, which was 2.3% higher than the existing methods. This study verified the effectiveness of the proposed method and provided an approach for the research and development of the MI-BCI system based on fewer channels.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface
    Rathee, Dheeraj
    Raza, Haider
    Roy, Sujit
    Prasad, Girijesh
    SCIENTIFIC DATA, 2021, 8 (01)
  • [42] Motor Imagery-based Brain-Computer Interface: Neural Network Approach
    D. M. Lazurenko
    V. N. Kiroy
    I. E. Shepelev
    L. N. Podladchikova
    Optical Memory and Neural Networks, 2019, 28 : 109 - 117
  • [44] Is Implicit Motor Imagery a Reliable Strategy for a Brain-Computer Interface?
    Osuagwu, Bethel A.
    Zych, Magdalena
    Vuckovic, Aleksandra
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (12) : 2239 - 2248
  • [45] Motor Imagery Brain-Computer Interface for RPAS Command and Control
    Arnaldo, Rosa
    Gomez Comendador, Fernando
    Perez, Luis
    Rodriguez, Alvaro
    ADVANCES IN HUMAN FACTORS AND SYSTEMS INTERACTION, 2018, 592 : 325 - 335
  • [46] Neurofeedback-based motor imagery training for brain-computer interface (BCI)
    Hwang, Han-Jeong
    Kwon, Kiwoon
    Im, Chang-Hwang
    JOURNAL OF NEUROSCIENCE METHODS, 2009, 179 (01) : 150 - 156
  • [47] Classification of Motor Imagery for Ear-EEG based Brain-Computer Interface
    Kim, Yong-Jeong
    Kwak, No-Sang
    Lee, Seong-Whan
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 129 - 130
  • [48] Effects of Task Complexity on Motor Imagery-Based Brain-Computer Interface
    Mashat, M. Ebrahim M.
    Lin, Chin-Teng
    Zhang, Dingguo
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) : 2178 - 2185
  • [49] Real-Time Brain-Computer Interface System Based on Motor Imagery
    TieJun LiuPing YangXuYong PengYu Huangand DeZhong Yao The authors are with the Key Laboratory for NeuroInformation of Ministry of EducationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
    Journal of Electronic Science and Technology of China, 2009, 7 (01) : 3 - 6
  • [50] Phase locking analysis of motor imagery in brain-computer interface
    Hu, Jianfeng
    Mu, Zhendong
    Wang, Jinli
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 2, 2008, : 478 - 481