Improved Brain-Computer Interface Signal Recognition Algorithm Based on Few-Channel Motor Imagery

被引:3
|
作者
Wang, Fan [1 ,2 ]
Liu, Huadong [1 ,2 ]
Zhao, Lei [3 ]
Su, Lei [1 ,2 ]
Zhou, Jianhua [1 ,2 ]
Gong, Anmin [4 ]
Fu, Yunfa [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Peoples R China
[2] Kunming Univ Sci & Technol, Brain Cognit & Brain Comp Intelligence Integrat G, Kunming, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Sci, Kunming, Peoples R China
[4] Chinese Peoples Armed Police Force Engn Univ, Sch Informat Engn, Xian, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
MI-BCI with fewer channels; Dempster-Shafer evidence theory; time-frequency decomposition (TFD); phase space reconstruction (PSR); common spatial pattern (CSP); EEG; DECOMPOSITION; SELECTION;
D O I
10.3389/fnhum.2022.880304
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Common spatial pattern (CSP) is an effective algorithm for extracting electroencephalogram (EEG) features of motor imagery (MI); however, CSP mainly aims at multichannel EEG signals, and its effect in extracting EEG features with fewer channels is poor-even worse than before using CSP. To solve the above problem, a new combined feature extraction method has been proposed in this study. For EEG signals from fewer channels (three channels), wavelet packet transform, fast ensemble empirical mode decomposition, and local mean decomposition were used to decompose the band-pass filtered EEG into multiple time-frequency components, and the corresponding components were selected according to the frequency characteristics of MI or the correlation coefficient between its time-frequency components and the original EEG signal. Furthermore, phase space reconstruction (PSR) was performed on the selected components after the three time-frequency decompositions, the maximum Lyapunov index was calculated, and the features were reconstructed; then, CSP projection mapping was used for the reconstructed features. The support vector machine probability output model was trained by the obtained three mappings. Probability outputs by three different support vector machines were then obtained. Finally, the classification of test samples was determined by the fusion of the Dempster-Shafer evidence theory at the decision level. The results showed that the accuracy of the proposed method was 95.71% on data set III of BCI competition II (left- and right-hand MI), which was 2.88% higher than the existing methods. On data set IIb of BCI competition IV, the average accuracy was 86.60%, which was 2.3% higher than the existing methods. This study verified the effectiveness of the proposed method and provided an approach for the research and development of the MI-BCI system based on fewer channels.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Signal classification algorithm in motor imagery based on asynchronous brain-computer interface
    Jiang, Yu
    He, Jingyan
    Li, Dandan
    Jin, Jing
    Shen, Yi
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1422 - 1426
  • [2] A Brain-Computer Interface Based on a Few-Channel EEG-fNIRS Bimodal System
    Ge, Sheng
    Yang, Qing
    Wang, Ruimin
    Lin, Pan
    Gao, Junfeng
    Leng, Yue
    Yang, Yuankui
    Wang, Haixian
    IEEE ACCESS, 2017, 5 : 208 - 218
  • [3] Pattern Recognition of Motor Imagery EEG Signal in Noninvasive Brain-Computer Interface
    Qu, Shen
    Liu, Jingmeng
    Chen, Weihai
    Zhang, Jianbin
    Chen, Weidong
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 1814 - 1819
  • [4] Relevance-based channel selection in motor imagery brain-computer interface
    Nagarajan, Aarthy
    Robinson, Neethu
    Guan, Cuntai
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [5] Automated Selection of a Channel Subset Based on the Genetic Algorithm in a Motor Imagery Brain-Computer Interface System
    Chang, Hongli
    Yang, Jimin
    IEEE ACCESS, 2019, 7 : 154180 - 154191
  • [6] A Motor Imagery Based Brain-Computer Interface Speller
    Xia, Bin
    Yang, Jing
    Cheng, Conghui
    Xie, Hong
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT II, 2013, 7903 : 413 - 421
  • [7] RETRACTED: A Fusion Algorithm for EEG Signal Processing Based on Motor Imagery Brain-Computer Interface (Retracted Article)
    Geng, Xiaozhong
    Xue, Song
    Yu, Ping
    Li, Dezhi
    Yue, Mengzhe
    Zhang, Xi
    Wang, Linen
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [8] Metrological performance of a single-channel Brain-Computer Interface based on Motor Imagery
    Angrisani, Leopoldo
    Arpaia, Pasquale
    Donnarumma, Francesco
    Esposito, Antonio
    Moccaldi, Nicola
    Parvis, Marco
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1286 - 1290
  • [9] A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection
    Lo, Chi-Chun
    Chien, Tsung-Yi
    Chen, Yu-Chun
    Tsai, Shang-Ho
    Fang, Wai-Chi
    Lin, Bor-Shyh
    SENSORS, 2016, 16 (02):
  • [10] Multilayer network-based channel selection for motor imagery brain-computer interface
    Yan, Shaoting
    Hu, Yuxia
    Zhang, Rui
    Qi, Daowei
    Hu, Yubo
    Yao, Dezhong
    Shi, Li
    Zhang, Lipeng
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (01)