Hierarchical Identification of Hammerstein-Wiener time-delay systems with maximum likelihood and gradient descent algorithm

被引:0
|
作者
Jiang, Yizhe [1 ]
Song, Weicheng [1 ]
Chu, Jie [1 ]
Li, Junhong [1 ]
机构
[1] Nantong Univ, Sch Elect Engn, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
system identification; Hammerstein-Wiener systems; maximum likelihood algorithm; gradient descent algorithm; hierarchical identification;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the parameter estimation for Hammerstein-Wiener nonlinear systems with unknown delay is studied. Based on the hierarchical identification principle and two-step identification, the maximum likelihood recursive algorithm is used to identify the parameters of the system, and the gradient descent method is used to identify the time delay. Finally, the algorithm is verified by a numerical example, and the simulation results show that the algorithm has the characteristics of fast convergence speed and high identification accuracy.
引用
收藏
页码:1413 / 1417
页数:5
相关论文
共 50 条
  • [1] On convergence analysis of an identification algorithm for Hammerstein-Wiener systems with unknown time-delay
    Atitallah, Asma
    Bedoui, Saida
    Abderrahim, Kamel
    IFAC PAPERSONLINE, 2017, 50 (01): : 14052 - 14057
  • [2] Parameter Identification for the Hammerstein-Wiener Nonlinear Time Delay Systems with Process Noises
    Li, Feng
    Han, Jiahu
    He, Naibao
    Cao, Qingfeng
    Xu, Liangliang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, 44 (03) : 1726 - 1752
  • [3] Hierarchical Least Squares Estimation Algorithm for Hammerstein-Wiener Systems
    Wang, Dong-Qing
    Ding, Feng
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (12) : 825 - 828
  • [4] Identification of Time-Varying Hammerstein-Wiener Systems
    Yu, Feng
    Mao, Zhizhong
    He, Dakuo
    IEEE ACCESS, 2020, 8 (08): : 136906 - 136916
  • [5] Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems
    Wang, Dongqing
    Ding, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3157 - 3164
  • [6] Finite time-delay estimation for soft sensors modelling Hammerstein-Wiener structures
    Graziani, Salvatore
    Xibilia, Maria Gabriella
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [7] Subspace intersection identification of Hammerstein-Wiener systems
    Goethals, Ivan
    Pelckmans, Kristiaan
    Hoegaerts, Luc
    Suykens, Johan
    De Moor, Bart
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 7108 - 7113
  • [8] The Hammerstein-wiener model for identification of stochastic systems
    Bolkvadze, GR
    AUTOMATION AND REMOTE CONTROL, 2003, 64 (09) : 1418 - 1431
  • [9] An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems
    Bai, EW
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 2756 - 2760
  • [10] Hierarchical maximum likelihood iterative identification algorithm for Hammerstein Box-Jenkins systems
    Li, Junhong
    Gu, Juping
    Yang, Yi
    Zhang, Xinsong
    2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2016,