Energy consumption investigation for a new car-following model considering driver's memory and average speed of the vehicles

被引:14
|
作者
Jin, Zhizhan [1 ,2 ,3 ]
Yang, Zaili [4 ]
Ge, Hongxia [1 ,2 ,3 ]
机构
[1] Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Zhejiang, Peoples R China
[2] Jiangsu Prov Collaborat Innovat Ctr Modern Urban, Nanjing 210096, Jiangsu, Peoples R China
[3] Ningbo Univ Subctr, Natl Traff Management Engn & Technol Res Ctr, Ningbo 315211, Zhejiang, Peoples R China
[4] Liverpool John Moores Univ, Offshore & Marine Res Inst, Liverpool Logist, Liverpool L3 3AF, Merseyside, England
基金
中国国家自然科学基金;
关键词
Traffic flow; Driver's memory; Average speed; Energy consumption; TDGL equation; TRAFFIC FLOW; BOUNDED RATIONALITY; JAMMING TRANSITION; NUMERICAL-SIMULATION; RELATIVE VELOCITY; DIFFERENCE MODEL; DRIVING BEHAVIOR; ON-RAMP; FEEDBACK; IMPACTS;
D O I
10.1016/j.physa.2018.05.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a modified car-following model is proposed by taking into account the influence of the average speed effect of vehicles and driver's memory on traffic flow basing on two velocity difference model (TVDM). The stability conditions are obtained through the linear stability analysis. The time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are derived in the unstable areas by means of nonlinear analysis, respectively. The TDGL and mKdV equations are constructed to describe the traffic behavior near the critical point. The evolution of traffic congestion and the corresponding energy consumption are discussed. The results from numerical simulations are consistent with the ones from theoretical analysis. It is found that the extended model can not only reduce energy consumption but also enhance the stability of traffic flow. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1038 / 1049
页数:12
相关论文
共 50 条
  • [21] A car-following model accounting for the driver's attribution
    Tang, Tie-Qiao
    He, Jia
    Yang, Shi-Chun
    Shang, Hua-Yan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 413 : 583 - 591
  • [22] Analysis of a Car-Following Model with Driver Memory Effect
    Xin, Zhi
    Xu, Jian
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (04):
  • [23] Traffic stability of a car-following model considering driver's desired velocity
    Zhang, Geng
    Sun, Di-Hua
    Liu, Wei-Ning
    Liu, Hui
    MODERN PHYSICS LETTERS B, 2015, 29 (19):
  • [24] An extended car-following model considering driver's desire for smooth driving on the curved road
    Sun, Yuqing
    Ge, Hongxia
    Cheng, Rongjun
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 527
  • [25] An extended car-following model considering the appearing probability of truck and driver's characteristics
    Rong, Ying
    Wen, Huiying
    PHYSICS LETTERS A, 2018, 382 (20) : 1341 - 1352
  • [26] A new car-following model with driver's anticipation effect of traffic interruption probability*
    Peng, Guang-Han
    CHINESE PHYSICS B, 2020, 29 (08)
  • [27] Analysis of car-following model considering driver's physical delay in sensing headway
    Zhu, H. B.
    Dai, S. Q.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (13) : 3290 - 3298
  • [28] A new car-following model considering drivers' heterogeneity of the disturbance risk appetite
    Zeng You-Zhi
    Zhang Ning
    Liu Li-Juan
    ACTA PHYSICA SINICA, 2014, 63 (06)
  • [29] Modeling and stability analysis of car-following behavior for connected vehicles by considering driver characteristic
    Wang, Wenjie
    Ma, Minghui
    Liang, Shidong
    Xiao, Jiacheng
    Yuan, Naitong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024, 238 (06) : 1639 - 1653
  • [30] Effect of the driver's desire for smooth driving on the car-following model
    Wang, Jufeng
    Sun, Fengxin
    Ge, Hongxia
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 512 : 96 - 108