Calcium phosphate nanocomposites via in situ mineralization in block copolymer hydrogels

被引:1
作者
Griffin, David M. [1 ,2 ]
Kennedy, Mitchell A. [3 ]
Bhatia, Surita R. [3 ]
机构
[1] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA
[2] Univ Kansas, Dept Chem & Petr Engn, Lawrence, KS 66045 USA
[3] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
biomaterial; calcium phosphate; hydrogel; nanocomposite; Pluronics; MECHANICAL-PROPERTIES; YOUNGS MODULUS; HYDROXYAPATITE; COMPOSITE; BIOMINERALIZATION; ORIENTATION; BEHAVIOR; SPHERES; MATRIX;
D O I
10.1002/pat.5183
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Significant research has been directed toward producing composites that mimic the micro- to nanoscale structure of bone tissue, and it remains a challenge to develop synthetic strategies to create cost-effective biocomposite materials with nanoscale inorganic domains. In this paper, we report the synthesis of nanocrystalline calcium phosphate minerals in situ in gels of a commercially available block copolymer, Pluronic F127 (F127). Although solutions of F127 have previously been explored as a templating agent for calcium phosphate mineralization, here we demonstrate the synthesis of nano-sized calcium hydrogen phosphate hydrate directly in F127 gels. Composites formed at pH 7 contained highly crystalline, millimeter-scale crystals of brushite, while composites created at an initial pH of 11 contained nanoscale particles of a calcium hydrogen phosphate hydrate similar to natural bone apatite in morphology and size, with a mean particle diameter of 120 nm. The in situ composites have storage moduli of 15-25 kPa, which is comparable to mechanically processed hydrogel composites containing four times more inorganic material. We believe that our synthetic strategy may provide a new class of versatile and cost-effective nanostructured biomaterials for use in understanding and replicating mineralized tissues.
引用
收藏
页码:1372 / 1379
页数:8
相关论文
共 47 条
[1]   MICELLIZATION OF POLY(ETHYLENE OXIDE)-POLY(PROPYLENE OXIDE)-POLY(ETHYLENE OXIDE) TRIBLOCK COPOLYMERS IN AQUEOUS-SOLUTIONS - THERMODYNAMICS OF COPOLYMER ASSOCIATION [J].
ALEXANDRIDIS, P ;
HOLZWARTH, JF ;
HATTON, TA .
MACROMOLECULES, 1994, 27 (09) :2414-2425
[2]   Experimental study of brushite precipitation [J].
Arifuzzaman, SM ;
Rohani, S .
JOURNAL OF CRYSTAL GROWTH, 2004, 267 (3-4) :624-634
[3]  
Chaudhuri O, 2016, NAT MATER, V15, P326, DOI [10.1038/NMAT4489, 10.1038/nmat4489]
[4]   Use of Fluorescence Labeled Mesenchymal Stem Cells in Pluronic F127 and Porous Hydroxyapatite As a Bone Substitute for Posterolateral Spinal Fusion [J].
Chen, Wen-Jer ;
Huang, Jau-Wen ;
Niu, Chi-Chien ;
Chen, Lih-Huei ;
Yuan, Li-Jen ;
Lai, Po-Liang ;
Yang, Chuen-Yung ;
Lin, Song-Shu .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2009, 27 (12) :1631-1636
[5]   Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering [J].
Cui, Zhong-Kai ;
Kim, Soyon ;
Baljon, Jessalyn J. ;
Wu, Benjamin M. ;
Aghaloo, Tara ;
Lee, Min .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]  
Da Silva MHP, 2001, SURF COAT TECH, V137, P270
[7]   Optimization of the mineral content in polymeric gels: The effect of calcium to phosphate molar ratio [J].
Das, P ;
Akkus, O ;
Azad, AM .
JOURNAL OF CRYSTAL GROWTH, 2005, 280 (3-4) :587-593
[8]   PH-Responsive biomineralization onto chitosan grafted biodegradable substrates [J].
Dias, Catarina I. ;
Mano, Joao F. ;
Alves, Natalia M. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (21) :2493-2499
[9]   Chitosan/Dextran Hydrogel Constructs Containing Strontium-Doped Hydroxyapatite with Enhanced Osteogenic Potential in Rat Cranium [J].
Ding, Xinxin ;
Li, Xue ;
Li, Chunyan ;
Qi, Manlin ;
Zhang, Zhe ;
Sun, Xiaolin ;
Wang, Lin ;
Zhou, Yanmin .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (09) :4574-4586
[10]   Endothelial Nanoparticle Binding Kinetics are Matrix and Size Dependent [J].
Doiron, Amber L. ;
Clark, Brendan ;
Rinker, Kristina D. .
BIOTECHNOLOGY AND BIOENGINEERING, 2011, 108 (12) :2988-2998