The Frobenius problem for Mersenne numerical semigroups

被引:27
|
作者
Rosales, J. C. [1 ]
Branco, M. B. [2 ]
Torrao, D. [3 ]
机构
[1] Univ Granada, Dept Algebra, E-18071 Granada, Spain
[2] Univ Evora, Dept Math, P-7000 Evora, Portugal
[3] Univ Evora, P-7000 Evora, Portugal
关键词
Mersenne numbers; Numerical semigroup; Frobenius number; Pseudo-Frobenius number; Genus; Embedding dimension; Type;
D O I
10.1007/s00209-016-1781-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give formulas for the embedding dimension, the Frobenius number, the type and the genus for a numerical semigroups generated by the Mersenne numbers greater than or equal to a given Mersenne number.
引用
收藏
页码:741 / 749
页数:9
相关论文
共 50 条
  • [31] Frobenius numbers of numerical semigroups generated by three consecutive squares or cubes
    Lepilov, Mikhail
    O'Rourke, Joshua
    Swanson, Irena
    SEMIGROUP FORUM, 2015, 91 (01) : 238 - 259
  • [32] Frobenius numbers of numerical semigroups generated by three consecutive squares or cubes
    Mikhail Lepilov
    Joshua O’Rourke
    Irena Swanson
    Semigroup Forum, 2015, 91 : 238 - 259
  • [33] Constructing the set of complete intersection numerical semigroups with a given Frobenius number
    A. Assi
    P. A. García-Sánchez
    Applicable Algebra in Engineering, Communication and Computing, 2013, 24 : 133 - 148
  • [34] Constructing the set of complete intersection numerical semigroups with a given Frobenius number
    Assi, A.
    Garcia-Sanchez, P. A.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (02) : 133 - 148
  • [35] Perfect numerical semigroups
    Moreno Frias, Maria Angeles
    Carlos Rosales, Jose
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1742 - 1754
  • [36] Parity numerical semigroups
    Angeles Moreno-Frias, Maria
    Carlos Rosales, Jose
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (03): : 1067 - 1075
  • [37] Almost symmetric numerical semigroups with high type
    Garcia Sanchez, Pedro A.
    Ojeda, Ignacio
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2499 - 2510
  • [38] Atoms of the set of numerical semigroups with fixed Frobenius number
    Rosales, J. C.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 41 - 51
  • [39] Modularly equidistant numerical semigroups
    ROSALES, Jose Carlos
    BRANCO, Manuel Baptista
    TRAESEL, Marcio Andre
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 288 - 299
  • [40] On certain families of sparse numerical semigroups with Frobenius number even
    Tizziotti, Guilherme
    Villanueva, Juan
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (01): : 99 - 116