The Frobenius problem for Mersenne numerical semigroups

被引:27
|
作者
Rosales, J. C. [1 ]
Branco, M. B. [2 ]
Torrao, D. [3 ]
机构
[1] Univ Granada, Dept Algebra, E-18071 Granada, Spain
[2] Univ Evora, Dept Math, P-7000 Evora, Portugal
[3] Univ Evora, P-7000 Evora, Portugal
关键词
Mersenne numbers; Numerical semigroup; Frobenius number; Pseudo-Frobenius number; Genus; Embedding dimension; Type;
D O I
10.1007/s00209-016-1781-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give formulas for the embedding dimension, the Frobenius number, the type and the genus for a numerical semigroups generated by the Mersenne numbers greater than or equal to a given Mersenne number.
引用
收藏
页码:741 / 749
页数:9
相关论文
共 50 条
  • [1] The Frobenius problem for Mersenne numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    Mathematische Zeitschrift, 2017, 286 : 741 - 749
  • [2] The Frobenius problem for repunit numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    The Ramanujan Journal, 2016, 40 : 323 - 334
  • [3] The Frobenius problem for Thabit numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    JOURNAL OF NUMBER THEORY, 2015, 155 : 85 - 99
  • [4] The Frobenius problem for repunit numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    RAMANUJAN JOURNAL, 2016, 40 (02): : 323 - 334
  • [5] The Frobenius problem for a class of numerical semigroups
    Gu, Ze
    Tang, Xilin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (05) : 1335 - 1347
  • [6] The Frobenius problem for numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    JOURNAL OF NUMBER THEORY, 2011, 131 (12) : 2310 - 2319
  • [7] ON THE FROBENIUS PROBLEM OF NUMERICAL SEMIGROUPS
    Leher, Eli
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 639 - 649
  • [8] The Frobenius Problem for Generalized Repunit Numerical Semigroups
    Branco, Manuel B.
    Colaco, Isabel
    Ojeda, Ignacio
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [9] The Frobenius Problem for Generalized Repunit Numerical Semigroups
    Manuel B. Branco
    Isabel Colaço
    Ignacio Ojeda
    Mediterranean Journal of Mathematics, 2023, 20
  • [10] On the Frobenius number and genus of a collection of semigroups generalizing repunit numerical semigroups
    Liu, Feihu
    Xin, Guoce
    Ye, Suting
    Yin, Jingjing
    SEMIGROUP FORUM, 2025, : 357 - 383