Electrical conductance of silicon photonic waveguides

被引:8
|
作者
Zanetto, Francesco [1 ]
Perino, Alessandro [1 ]
Petrini, Matteo [1 ]
Toso, Fabio [1 ]
Milanizadeh, Maziyar [1 ]
Morichetti, Francesco [1 ]
Melloni, Andrea [1 ]
Ferrari, Giorgio [1 ]
Sampietro, Marco [1 ]
机构
[1] Politecn Milan, Dept Elect Informat & Bioengn, I-20133 Milan, Italy
关键词
EFFICIENT;
D O I
10.1364/OL.408669
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Many optoelectronic devices embedded in a sil icon photonic chip, like photodetectors, modulators, and attenuators, rely on waveguide doping for their operation. However, the doping level of a waveguide is not always reflecting in an equal amount of free carriers available for conduction because of the charges and trap energy states inevitably present at the Si/SiO2 interface. In a silicon-on-insulator technology with 10(15) cm(-3) p-doped native waveguides, this can lead to a complete depletion of the core from free carriers and to a consequently very high electrical resistance. This Letter experimentally quantifies this effect and shows how the amount of free carriers in a waveguide can be modified and restored to the original doping value with a proper control of the chip substrate potential. A similar capability is also demonstrated by means of a specific metal gate integrated above the waveguide that allows fine control of the conductance with high locality level. This paper highlights the linearity achievable in the conductance modulation that can be exploited in a number of possible applications. (C) 2020 Optical Society of America
引用
收藏
页码:17 / 20
页数:4
相关论文
共 50 条
  • [21] Electrical conductance of reconstructed silicon surfaces
    Yoo, K
    Weitering, HH
    PHYSICAL REVIEW B, 2002, 65 (11) : 1 - 11
  • [22] Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide
    Neal, RT
    Zoorob, ME
    Charlton, MD
    Parker, GJ
    Finlayson, CE
    Baumberg, JJ
    APPLIED PHYSICS LETTERS, 2004, 84 (13) : 2415 - 2417
  • [23] Experimental verification of quantized conductance for microwave frequencies in photonic crystal waveguides
    Dai, W.
    Wang, B.
    Koschny, Th.
    Soukoulis, C. A.
    PHYSICAL REVIEW B, 2008, 78 (07)
  • [24] Silicon-based Plasmonic Waveguides Interfaced to Silicon Photonic Platform
    Sederberg, S.
    Van, V.
    Elezzabi, A. Y.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [25] Photonic crystal waveguides on silicon rich nitride platform
    Debnath, Kapil
    Bucio, Thalia Dominguez
    Al-Attili, Abdelrahman
    Khokhar, All Z.
    Saito, Shinichi
    Gardes, Frederic Y.
    OPTICS EXPRESS, 2017, 25 (04): : 3214 - 3221
  • [26] Honeycomb Photonic Crystal Waveguides in a Suspended Silicon Slab
    Puerto, Daniel
    Griol, Amadeu
    Escalante, Jose M.
    Pennec, Yan
    Djafari-Rouhani, Bahram
    Beugnot, Jean-Charles
    Laude, Vincent
    Martinez, Alejandro
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (22) : 2056 - 2059
  • [27] Photonic devices based on silicon hybrid plasmonic waveguides
    Lou, Fei
    Wang, Zhechao
    Dai, Daoxin
    Thylen, Lars
    Wosinski, Lech
    2012 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2012,
  • [28] Interplay of nonlinear dynamics in silicon photonic crystal waveguides
    Husko, C.
    Blanco-Redondo, A.
    Eades, D.
    Li, J.
    Krauss, T.
    Eggleton, B. J.
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [29] Lateral confinement in macroporous silicon photonic crystal waveguides
    David, S
    Chelnokov, A
    Lourtioz, JM
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2002, 4 (04): : 468 - 473
  • [30] Silica-embedded silicon photonic crystal waveguides
    White, T. P.
    O'Faolain, L.
    Li, Juntao
    Andreani, L. C.
    Krauss, T. F.
    OPTICS EXPRESS, 2008, 16 (21): : 17076 - 17081