Active Learning for kNN Using Instance Impact

被引:0
作者
Qayyumi, Sayed Waleed [1 ]
Park, Laurence A. F. [1 ]
Obst, Oliver [1 ]
机构
[1] Western Sydney Univ, Ctr Res Math & Data Sci, Sch Comp Data & Math Sci, Locked Bag 1797, Penrith, NSW 2751, Australia
来源
AI 2022: ADVANCES IN ARTIFICIAL INTELLIGENCE | 2022年 / 13728卷
关键词
Active learning; Uncertainty sampling; Unlabelled sampling; Random sampling; Incremental learning; Few shot learning; Entropy; Uncertain labels;
D O I
10.1007/978-3-031-22695-3_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Labelling unlabeled data is a time-consuming and expensive process. Labelling initiatives should select samples that are likely to enhance the classification accuracy of the classifier. Several methods can be employed to accomplish this goal. One of these techniques is to select samples with the highest level of uncertainty in their predicted labels. Experts then label these samples. Another option is to choose samples at random. This paper proposes three methods for identifying unlabeled samples to improve predictive accuracy when they are labelled. Our study explores how to select samples when we have very few labelled samples available from manifold distributed data sets. In order to assess performance, we have compared our approaches with uncertainty sampling and random sampling. We demonstrate that our methods outperform uncertainty sampling and random sampling by using public and real-world data sets.
引用
收藏
页码:413 / 426
页数:14
相关论文
共 24 条
  • [1] OBSERVATIONAL STUDY OF BEHAVIOR - SAMPLING METHODS
    ALTMANN, J
    [J]. BEHAVIOUR, 1974, 49 (3-4) : 227 - 267
  • [2] Influence of uncertainty and surprise on human corticospinal excitability during preparation for action
    Bestmann, Sven
    Harrison, Lee M.
    Blankenburg, Felix
    Mars, Rogier B.
    Haggard, Patrick
    Friston, Karl J.
    Rothwell, John C.
    [J]. CURRENT BIOLOGY, 2008, 18 (10) : 775 - 780
  • [3] Cao L., 2021, ARXIV
  • [4] Dunn E, 2009, BMVC, P1, DOI [DOI 10.5244/C.23.53, 10.5244/C.23.53]
  • [5] Etikan I., 2017, BIOMETRICS BIOSTATIS, V5, DOI [DOI 10.15406/BBIJ.2017.05.00149, 10.15406/bbij.2017.05.001, DOI 10.15406/BBIJ.2017.05.001]
  • [6] Fraboni Y, 2021, Arxiv, DOI arXiv:2105.05883
  • [7] Giraud-Carrier C, 2000, AI COMMUN, V13, P215
  • [8] GOODMAN LA, 1961, ANN MATH STAT, V32, P148, DOI 10.1214/aoms/1177705148
  • [9] Jenkinson A., 2009, Journal of Direct, Data and Digital Marketing, V11, P124, DOI DOI 10.1057/DDDMP.2009.27
  • [10] The importance of correcting for sampling bias in MaxEnt species distribution models
    Kramer-Schadt, Stephanie
    Niedballa, Juergen
    Pilgrim, John D.
    Schroeder, Boris
    Lindenborn, Jana
    Reinfelder, Vanessa
    Stillfried, Milena
    Heckmann, Ilja
    Scharf, Anne K.
    Augeri, Dave M.
    Cheyne, Susan M.
    Hearn, Andrew J.
    Ross, Joanna
    Macdonald, David W.
    Mathai, John
    Eaton, James
    Marshall, Andrew J.
    Semiadi, Gono
    Rustam, Rustam
    Bernard, Henry
    Alfred, Raymond
    Samejima, Hiromitsu
    Duckworth, J. W.
    Breitenmoser-Wuersten, Christine
    Belant, Jerrold L.
    Hofer, Heribert
    Wilting, Andreas
    [J]. DIVERSITY AND DISTRIBUTIONS, 2013, 19 (11) : 1366 - 1379