A Super mKdV Equation: Bosonization, Painleve Property and Exact Solutions

被引:4
作者
Ren, Bo [1 ]
Lou, Sen-Yue [2 ,3 ,4 ]
机构
[1] Shaoxing Univ, Inst Nonlinear Sci, Shaoxing 312000, Peoples R China
[2] Ningbo Univ, Ctr Nonlinear Sci, Ningbo 315211, Zhejiang, Peoples R China
[3] Ningbo Univ, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China
[4] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
super mKdV equation; bosonization approach; Painleve; exact solutions; DE-VRIES EQUATION; SOLITON-SOLUTIONS; SYMMETRIES; EXTENSION;
D O I
10.1088/0253-6102/69/4/343
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The symmetry of the fermionic field is obtained by means of the Lax pair of the mKdV equation. A new super mKdV equation is constructed by virtue of the symmetry of the fermionic form. The super mKdV system is changed to a system of coupled bosonic equations with the bosonization approach. The bosonized SmKdV (BSmKdV) equation admits Painleve property by the standard singularity analysis. The traveling wave solutions of the BSmKdV system are presented by the mapping and deformation method. We also provide other ideas to construct new super integrable systems.
引用
收藏
页码:343 / 346
页数:4
相关论文
共 34 条
[1]   An operator valued extension of the super Korteweg-de Vries equations [J].
Andrea, S ;
Restuccia, A ;
Sotomayor, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) :2625-2634
[2]   Interactions between solitons and other nonlinear Schrodinger waves [J].
Cheng, Xue-Ping ;
Lou, S. Y. ;
Chen, Chun-li ;
Tang, Xiao-Yan .
PHYSICAL REVIEW E, 2014, 89 (04)
[3]   New exact solutions to the mKdV equation with variable coefficients [J].
Dai, CQ ;
Zhu, JM ;
Zhang, JF .
CHAOS SOLITONS & FRACTALS, 2006, 27 (04) :881-886
[4]   INFINITE SET OF CONSERVATION LAWS OF SUPERSYMMETRIC SINE-GORDON THEORY [J].
FERRARA, S ;
GIRARDELLO, L ;
SCIUTO, S .
PHYSICS LETTERS B, 1978, 76 (03) :303-306
[5]   Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation [J].
Gao, Xiao Nan ;
Lou, S. Y. ;
Tang, Xiao Yan .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05)
[6]   Bosonization of supersymmetric KdV equation [J].
Gao, Xiao Nan ;
Lou, S. Y. .
PHYSICS LETTERS B, 2012, 707 (01) :209-215
[7]  
Guo BX, 2016, COMMUN THEOR PHYS, V66, P589, DOI 10.1088/0253-6102/66/6/589
[8]   A SUPER AKNS SCHEME [J].
GURSES, M ;
OGUZ, O .
PHYSICS LETTERS A, 1985, 108 (09) :437-440
[9]   An approach to generate superextensions of integrable systems [J].
Hu, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02) :619-632
[10]   Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation [J].
Hu, Xiao-Rui ;
Lou, Sen-Yue ;
Chen, Yong .
PHYSICAL REVIEW E, 2012, 85 (05)